
MJOLNIR Documentation
Release 1.0

Jakob Lass

Aug 03, 2023

Contents

1 Introduction 1
1.1 Software Structure . 1
1.2 Installation . 1
1.3 License . 2
1.4 Bug Report . 2

2 Tutorials 3
2.1 Scripting Tutorials . 3
2.2 Command Line Tutorials . 25

3 MJOLNIR Module 31
3.1 Geometry Module . 31
3.2 Statistics Module . 36
3.3 Data Module . 37
3.4 Tools functions . 59

4 In depth description of core functionalities 61
4.1 Geometry . 61
4.2 Energy normalization procedure . 63
4.3 Data file conversion . 65
4.4 Voronoi tessellation and plotting functionality . 70
4.5 Visualization methods . 72

5 Optimizations 73
5.1 Optimizing of the plotA3A4 rountine . 73
5.2 Voronoi Tessellation subroutine . 74
5.3 Timing function . 74

6 Commissioning 77
6.1 29/10-18 - Start of hot commissioning . 77
6.2 30/10-18 - Opening of shutter and background . 79
6.3 31/10-18 - Data wrangling and measurement . 80
6.4 01/11-18 - First Vanadium normalization scan . 81
6.5 02/11-18 - Background hunting . 82
6.6 05/11-18 - Energy normalization . 82
6.7 06/11-18 - Determination of A4 + Be filter cooling . 85
6.8 09/11-18 - First magnon in YMnO3 . 86

i

6.9 10/11-18 - Currat Axe Spurion in YMnO3 . 87
6.10 12/11-18 - No beam . 87
6.11 13/11-18 - No beam . 87
6.12 14/11-18 - No beam . 88
6.13 15/11-18 - No beam . 88
6.14 16/11-18 - Diffuse scattering . 88
6.15 17/11-18 - Magnon in YMnO3 . 89
6.16 18/11-18 - Spinwaves in PbTi . 90
6.17 19/11-18 - Spinwaves in PbTi . 90
6.18 20/11-18 - Vacuum problems at SINQ . 90
6.19 21/11-18 - Measurement of CuSeO3 . 93
6.20 21/11-18 - Measurement of CuSeO3 II . 93
6.21 23/11-18 - Startup of Ni3TeO6 . 93
6.22 24/11-18 - Measurment of Ni3TeO6 II . 93
6.23 25/11-18 - Measurment of Ni3TeO6 III . 93
6.24 26/11-18 - Measurment of YMnO3 Startup . 93
6.25 27/11-18 - Measurment of YMnO3 II . 93
6.26 28/11-18 - Measurment of YMnO3 III . 93
6.27 29/11-18 - Measurment of YMnO3 IV . 93
6.28 30/11-18 - Measurment of YMnO3 V . 94
6.29 01/12-18 - Measurment of YMnO3 VI . 94
6.30 02/12-18 - Startup of Ming Purple . 94
6.31 03/12-18 - Ming Purple II . 94
6.32 04/12-18 - Magnet force test and Startup of LSCO . 94
6.33 05/12-18 - LSCO II . 94
6.34 06/12-18 - Christmas and Ming Purple . 95
6.35 07/12-18 - Christmas and Ming Purple . 95
6.36 08/12-18 - Christmas and Ming Purple . 96
6.37 09/12-18 - Startup of ??? . 96
6.38 10/12-18 - Beam Down . 96
6.39 11/12-18 - Beam Down . 96
6.40 12/12-18 - Beam Down . 96
6.41 13/12-18 - Beam development . 96
6.42 14/12-18 - Startup of K2Ni2 . 96
6.43 15/12-18 - K2Ni2 II . 96
6.44 16/12-18 - K2Ni2 III . 96
6.45 17/12-18 - Start of SCBO . 96
6.46 18/12-18 - SCBO II . 96
6.47 19/12-18 - Start of MnF2 . 96
6.48 20/12-18 - MNF2 II . 97
6.49 21/12-18 - MNF2 III and Beam Shutdown . 97
6.50 Shielding Issues . 97
6.51 Electronic logbook of scans files . 98

Python Module Index 109

Index 111

ii

CHAPTER 1

Introduction

This is the introductonary page for the MOLJNIR software package. The main purpose of this document is to give an
overview of different features of the software and how you can contribute to it.

The software is currently developed solely by Jakob Lass, PhD student at both the Niels Bohr Institute, Copenhagen
- Denmark, and the Paul Scherrer Institute, Villigen - Switzerland, and is not developed by a professional team. The
software is intended to be used for data treatment and visualization for the CAMEA upgrad at the RITA II instrument
at SINQ, PSI Villigen - Switzerland.

The software is found at GitHub and is intended to be used together with Python versions 2.7, (3.4,) 3.5, and 3.6. This
compability is ensured by the use of automated unit test through the Travis project (Travis). Python 3.4 is no longer
tested due to updates in the Travis testing frameworl. Further than just testing, as to ensure a thorough testing the
coverage of these are monitored using Coverals (Coveralls). However, certain algorithms and methods are not suited
to be tested through simple tests. This includes graphical methods where one for example uses a plotting routine to
generate a specific output. Though the visual inspection is far outside of the testing scope for this software, some of
the methods are still tested by simple run through test. That is, if they can be run and generate a plot without crashing
and throwing an error, it is believed that they work as intended. This is where acutal user testing is needed.

1.1 Software Structure

The software is devided into individual modules being Instrument, DataSet, and Statistics. With this division it is
intended that each part of the software suit is to be fully independent of the others but may be used together. The same
goes for the tutorials that are intended to cover all of the methods and workflows a user would come into contact with
while using the software.

1.2 Installation

The inteded way for the software to be installed on a computer is currently to navigate to the github page GitHub and
download the latest release, usually found in the main branch. For an up to date version with new features, the 1.0.0
branch can be used, but is not to be assumed complete. It is recommended to create a new Anaconda environment or
similar for the installation, but this is not required. By utilizing the pip package manager:

1

https://github.com/Jakob-Lass/MJOLNIR/
https://travis-ci.org/Jakob-Lass/MJOLNIR/
https://coveralls.io/github/Jakob-Lass/MJOLNIR/
https://github.com/Jakob-Lass/MJOLNIR/

MJOLNIR Documentation, Release 1.0

cd MJOLNIR
pip install .

Alternatively one can install it directly by running

cd MJOLNIR
python install.py install

Both of the above methods installs the software to the specified environment. If only a temporary local build is wanted,
the latter aproach can be used with ‘install’ replaced by ‘build.

1.3 License

The software package is released under the software lincense Mozilla Public License Version 2.0 to allow for redis-
tribution and usage of the code. If this linces file has not been shipped with your distribution of the code, please find
it here: licence.

1.4 Bug Report

If an un error or unexpected behaviour of the software is observed, or if a feature is needed, you are more than welcome
to create an issue or feature request at the GitHub page (Issues). Dealing and fixing the reported bugs will be most
easily done if both operation system, software version, a minimal working example, and other relevant informations
are provided. Further as time goes by, it is hoped that this page will also contain explanations and answers to the most
frequently asked question of the software.

Currently there are the following open issues and closed

2 Chapter 1. Introduction

https://github.com/Jakob-Lass/MJOLNIR/
https://choosealicense.com/licenses/
https://github.com/Jakob-Lass/MJOLNIR/issues
https://github.com/Jakob-Lass/MJOLNIR/
https://github.com/Jakob-Lass/MJOLNIR/

CHAPTER 2

Tutorials

Below is a list of different types tutorials in order to familiarize users with the objects and methods used in MJOLNIR.

2.1 Scripting Tutorials

Following is a list of scripting tutorials covering a given method but does not necessarily present a normal workflow.

2.1.1 Build a simple instrument

In order to build a complete instrument using the MJOLNIR Geometry Module module, a lot of different objects need
to come together. This tutorial sets out to introduce these step by step with each example increases complexity. The
following is an example of how to build a simple instrument consisting of one Detectors and one Analysers grouped
togehter by a Wedge object:

3

MJOLNIR Documentation, Release 1.0

1 from MJOLNIR.Geometry import Instrument,
→˓Detector,Analyser,Wedge

2 def test_Build_a_simple_
→˓instrument(saveFig = False):

3 import matplotlib.pyplot as plt
4 import numpy as np
5 from mpl_toolkits.mplot3d import

→˓Axes3D
6

7 Instr = Instrument.Instrument()
8

9 Det = Detector.
→˓TubeDetector1D(position=(1,0,1),
→˓direction=(1,0,0))

10 Ana = Analyser.
→˓FlatAnalyser(position=(1,0,0),
→˓direction=(1,0,1))

11

12 wedge = Wedge.Wedge(position=(0,0,0),
→˓detectors=Det,analysers=Ana)

13

14 Instr.append(wedge)
15

16 fig = plt.figure()
17 ax = fig.gca(projection='3d')
18

19 Instr.plot(ax)
20

21 ax.set_xlim(-0.1,1.1)
22 ax.set_ylim(-0.1,1.1)
23 ax.set_zlim(-0.1,1.1)
24

25 if saveFig:
26 plt.savefig('../docs/_templates/

→˓Build_a_simple_instrument.png',format=
→˓'png',dpi=300)

27 plt.show()
28

29 if __name__=='__main__':
30 test_Build_a_simple_

→˓instrument(saveFig = True)
31

Fig. 1: The figure produced by the current code exam-
ple.

2.1.2 Calcualte A4 and Ef

This is an example of initialization of an instrument with two detectors and two analysers. The detectors each have-10
pixels, where the first 5 are looking at the first analyser and the last 5 are looking at the second analyser. This gives rise
to different energies. As the second detector is moved away from the straight line through the analyser its A4 values

4 Chapter 2. Tutorials

MJOLNIR Documentation, Release 1.0

also changes.

1 from MJOLNIR.Geometry import Instrument,
→˓Detector,Analyser,Wedge

2 def test_CalcualteA4Ef():
3

4 Instr = Instrument.Instrument()
5 Det = Detector.

→˓TubeDetector1D(position=(1,0,1),
→˓direction=(1,0,0),pixels=10,split=[2,5,
→˓8],length=1.0)

6 Det2 = Detector.
→˓TubeDetector1D(position=(1,0.1,1),
→˓direction=(1,0,0),pixels=10,split=[2,5,
→˓8],length=1.0)

7 Ana = Analyser.
→˓FlatAnalyser(position=(0.5,0,0),
→˓direction=(1,0,1))

8 Ana2 = Analyser.
→˓FlatAnalyser(position=(1,0,0),
→˓direction=(1,0,1))

9

10 wedge = Wedge.Wedge(position=(0,0,0),
→˓detectors=[Det,Det2],analysers=[Ana,
→˓Ana2])

11

12 Instr.append(wedge)
13

14 Instr.initialize()
15 print(Instr.A4)
16 print(Instr.Ef)
17

18 if __name__=='__main__':
19 test_CalcualteA4Ef()

[[array([-1.57079633, -1.57079633, -1.57079633, -
1.57079633, -1.57079633, -1.57079633]), array([-
1.55451765, -1.55481497, -1.55518368, -1.52099283,
-1.52123672, -1.5217106])]]
[[array([4.81164763, 5.44262522, 6.18119629,
3.83622353, 4.27947022, 4.81164763]), array([
4.81454296, 5.44345335, 6.17926234, 3.84580202,
4.29004983, 4.82331398])]]

2.1.3 Load instrument from XML file

In order to not having to create an instrument from scratch each time a data treament is performed, one way is to
load the instrument from a XML file formated as below. What is important is the structure of the XML file, where
the outer object is the instrument with all of it settings; middle part is the wedge(s) and inner part all of the detectors
and analysers. All objects in the instrument has their attributes defined in the opening bracket of the XML object and
nothing between it and the closing bracket.

2.1. Scripting Tutorials 5

MJOLNIR Documentation, Release 1.0

1 <?xml version="1.0"?>
2 <Instrument Initialized='False' Author='Jakob Lass' Date ='16/03/18' position='0.0,

→˓0.0,0.0'>
3 <Wedge position='0.0,0.0,0.0' concept='ManyToMany'>
4 <FlatAnalyser position='0.054020677125896165,0.9284297315590769,0.0' direction='0.

→˓707106781187,0.0,0.707106781187' d_spacing='3.35' mosaicity='60' width='0.05'
→˓height='0.1'></FlatAnalyser>

5 <FlatAnalyser position='0.05773242042519161,0.9922218389210393,0.0' direction='0.
→˓707106781187,0.0,0.707106781187' d_spacing='3.35' mosaicity='60' width='0.05'
→˓height='0.1'></FlatAnalyser>

6 <FlatAnalyser position='0.06139188564984909,1.0551154658976218,0.0' direction='0.
→˓707106781187,0.0,0.707106781187' d_spacing='3.35' mosaicity='60' width='0.05'
→˓height='0.1'></FlatAnalyser>

7 <FlatAnalyser position='0.06502811617466747,1.1176097682584802,0.0' direction='0.
→˓707106781187,0.0,0.707106781187' d_spacing='3.35' mosaicity='60' width='0.05'
→˓height='0.1'></FlatAnalyser>

8 <FlatAnalyser position='0.06869919874924452,1.1807030575429251,0.0' direction='0.
→˓707106781187,0.0,0.707106781187' d_spacing='3.35' mosaicity='60' width='0.05'
→˓height='0.1'></FlatAnalyser>

9 <FlatAnalyser position='0.07235285529894223,1.2434968533655766,0.0' direction='0.
→˓707106781187,0.0,0.707106781187' d_spacing='3.35' mosaicity='60' width='0.05'
→˓height='0.1'></FlatAnalyser>

10 <FlatAnalyser position='0.07608202462311699,1.3075884541893323,0.0' direction='0.
→˓707106781187,0.0,0.707106781187' d_spacing='3.35' mosaicity='60' width='0.05'
→˓height='0.1'></FlatAnalyser>

11 <FlatAnalyser position='0.07985185467201017,1.3723788730906055,0.0' direction='0.
→˓707106781187,0.0,0.707106781187' d_spacing='3.35' mosaicity='60' width='0.05'
→˓height='0.1'></FlatAnalyser>

12 <TubeDetector1D position='0.13917281377075363,1.1919022308508072,0.7' direction='0.
→˓13917281377075363,1.1919022308508072,0.0' pixels='1024' length='0.883' diameter=
→˓'0.02' split='55,158,278,397,515,634,755,877,973'></TubeDetector1D>

13 <TubeDetector1D position='0.11605723555894083,1.1943746137935185,0.7' direction='0.
→˓11605723555894083,1.1943746137935185,0.0' pixels='1024' length='0.883' diameter=
→˓'0.02' split='55,158,278,397,515,634,755,877,973'></TubeDetector1D>

14 <TubeDetector1D position='0.09289810020961405,1.1963987391239779,0.7' direction='0.
→˓09289810020961405,1.1963987391239779,0.0' pixels='1024' length='0.883' diameter=
→˓'0.02' split='55,158,278,397,515,634,755,877,973'></TubeDetector1D>

15 <TubeDetector1D position='0.06970409951728537,1.1979738471730024,0.7' direction='0.
→˓06970409951728537,1.1979738471730024,0.0' pixels='1024' length='0.883' diameter=
→˓'0.02' split='55,158,278,397,515,634,755,877,973'></TubeDetector1D>

16 <TubeDetector1D position='0.04648393836168752,1.19909934679091,0.7' direction='0.
→˓04648393836168752,1.19909934679091,0.0' pixels='1024' length='0.883' diameter='0.
→˓02' split='55,158,278,397,515,634,755,877,973'></TubeDetector1D>

17 <TubeDetector1D position='0.02324633144076829,1.1997748155693826,0.7' direction='0.
→˓02324633144076829,1.1997748155693826,0.0' pixels='1024' length='0.883' diameter=
→˓'0.02' split='55,158,278,397,515,634,755,877,973'></TubeDetector1D>

18 <TubeDetector1D position='-0.0,1.2,0.7' direction='-0.0,1.2,0.0' pixels='1024'
→˓length='0.883' diameter='0.02' split='55,158,278,397,515,634,755,877,973'></
→˓TubeDetector1D>

19 <TubeDetector1D position='0.1276210119438152,1.1931944004689414,0.71' direction='0.
→˓1276210119438152,1.1931944004689414,0.0' pixels='1024' length='0.883' diameter='0.
→˓02' split='55,158,278,397,515,634,755,877,973'></TubeDetector1D>

20 <TubeDetector1D position='0.10448256963424918,1.195442760086247,0.71' direction='0.
→˓10448256963424918,1.195442760086247,0.0' pixels='1024' length='0.883' diameter='0.
→˓02' split='55,158,278,397,515,634,755,877,973'></TubeDetector1D>

21 <TubeDetector1D position='0.08130491424476227,1.1972424612081096,0.71' direction=
→˓'0.08130491424476227,1.1972424612081096,0.0' pixels='1024' length='0.883'
→˓diameter='0.02' split='55,158,278,397,515,634,755,877,973'></TubeDetector1D>

22 <TubeDetector1D position='0.05809674452057436,1.1985928283934086,0.71' direction=
→˓'0.05809674452057436,1.1985928283934086,0.0' pixels='1024' length='0.883'
→˓diameter='0.02' split='55,158,278,397,515,634,755,877,973'></TubeDetector1D>

23 <TubeDetector1D position='0.03486677065916047,1.1994933548393678,0.71' direction=
→˓'0.03486677065916047,1.1994933548393678,0.0' pixels='1024' length='0.883'
→˓diameter='0.02' split='55,158,278,397,515,634,755,877,973'></TubeDetector1D>

24 <TubeDetector1D position='0.011623711041249318,1.199943702571762,0.71' direction=
→˓'0.011623711041249318,1.199943702571762,0.0' pixels='1024' length='0.883'
→˓diameter='0.02' split='55,158,278,397,515,634,755,877,973'></TubeDetector1D>

25 </Wedge>
26 </Instrument>

1 from MJOLNIR.Geometry import Instrument,
→˓Detector,Analyser,Wedge

2 def test_Load_XML(save=False):
3 import matplotlib.pyplot as plt
4 import numpy as np
5 Instr = Instrument.

→˓Instrument(fileName='Tutorials/
→˓SimpleInstrument.xml') # Load XML file

6

7

8 fig = plt.figure() # Create 3D figure
9 ax = fig.gca(projection='3d')

10

11 Instr.plot(ax) # Plot instrument
12

13 ax.set_ylim(0.0,1.5)
14 ax.set_xlim(-0.2,0.2)
15 ax.set_zlim(0.0,1.1)
16 ax.set_xlabel('x [m]')
17 ax.set_ylabel('y [m]')
18 ax.set_zlabel('z [m]')
19 plt.tight_layout()
20 if save:
21 plt.savefig('SimpleInstrument.png

→˓',format='png',dpi=300)
22

23 Instr.initialize() # Initialize
→˓instrument

24

25 plt.figure()
26 for det in range(len(Instr.wedges[0].

→˓detectors)):
27 start,stop = Instr.wedges[0].

→˓detectors[det]._split[[0,-1]]
28 plt.scatter(np.arange(start,

→˓stop),#range(Instr.wedges[0].
→˓detectors[det].pixels),

29 Instr.A4[0][det]*180.
→˓0/np.pi,zorder=10,s=3)

30

31 plt.grid(True)
32 plt.xlabel('Pixel')
33 plt.ylabel('A4 [deg]')
34 if save:
35 plt.savefig('SimpleInstrument_A4.

→˓png',format='png',dpi=300)
36 plt.figure()
37 for det in range(len(Instr.wedges[0].

→˓detectors)):
38 start,stop = Instr.wedges[0].

→˓detectors[det]._split[[0,-1]]
39 plt.scatter(np.arange(start,

→˓stop),#Instr.wedges[0].detectors[det].
→˓pixels),

40 Instr.Ef[0][det],
→˓zorder=10,s=3)

41

42 plt.grid(True)
43 plt.xlabel('Pixel')
44 plt.ylabel('Ef [meV]')
45 plt.tight_layout()
46 if save:
47 plt.savefig('SimpleInstrument_Ef.

→˓png',format='png',dpi=300)
48 plt.show()
49

50 if __name__ == '__main__':
51 test_Load_XML(True)

Plot of instrument loaded from the XML file. Remem-
ber, that the sample is located at the origin (0,0,0)

Scattering angles of the different dectors, where individ-
ual pixels hit different detectors.

Energies of the different dectors, where individual pix-
els hit different detectors.

6 Chapter 2. Tutorials

MJOLNIR Documentation, Release 1.0

2.1.4 Generate normalization table from data

Before real data can be converted from pixel position and counts into S(q,omega), one needs decide the binning used
for the data as well as generate the normalization tables used. This is done using a Vanadium scan file containing a
suitable number of energy steps. Three different binnings for each energy at all of the detectors are default for the
CAMEA backend:

• 8 pixels (‘PrismaticHighDefinition’)

• 3 pixels (‘PrismaticLowDefinition’)

• 1 pixel (‘Single’)

• n pixels (n is integer)

Having chosen binning(s) one creates the tables either with or without creating fit plots at the same time. Creating
these does indeed increase runtime a lot but is needed when one wants to inspect the fitting performed. A error will be
raised if the number of peaks found in the data file does not match the number of analyser the detectors are exposed
to.

1 from MJOLNIR.Geometry import Instrument
2 def Generate_normalization(plot=False):
3 Instr = Instrument.

→˓Instrument(fileName='/home/lass/
→˓Dropbox/PhD/Software/MJOLNIR/Data/
→˓CAMEA_Updated.xml')#'TestData/1024/
→˓CAMEA_Full.xml')

4 Instr.initialize()
5

6 VanNormFile = '/home/lass/Dropbox/
→˓PhD/CAMEAData/camea2018n000119.hdf'#'/
→˓home/lass/Dropbox/PhD/CAMEAData/
→˓camea2018n000084.hdf'#'/TestData/1024/
→˓camea2018n000038.hdf'#'TestData/1024/
→˓EScanRunDoubleFocusHS.h5'

7 Instr.
→˓generateCalibration(Vanadiumdatafile=VanNormFile,
→˓savelocation='/home/lass/Dropbox/PhD/
→˓CAMEAData/NormalizationUpdated/',
→˓plot=plot,tables=[1,3,8])

8

9 if __name__ == '__main__':
10 Generate_normalization(False)
11

Plot of fit to data integrated in the energy direction for
wedge 4.

Active area of detector 51 as defined by 3 sigmas away
from center pixel, where red denotes active and black
inactive.

Fit of peaks in vanadium data for detector 51 when using
a a binning of 8 pixels per analyser.

2.1. Scripting Tutorials 7

MJOLNIR Documentation, Release 1.0

In the end, it is the data in the normalization file, in the above case denoted EnergyNormalization_8.calib and located
in the TestData, folder that is essensial. It contains the normalization and energy location of all peaks on all detectors
in the format:

• Detector (int)

• Energy (int)

• Pixel (int)

• Amplitude [Arb]

• Center [meV]

• Width [meV]

• Background [Arb]

• lowerBin [pixelId]

• upperBin [pixelId]

• A4Offset [deg]

on each line starting with detector 0, analyser 0, pixel 0 increasing index of pixel, then analyser and lastly detector.

2.1.5 Raw plotting and fitting

For specific details on the objevt c.f. Viewer1D.

The visualizer is inteded to take a data-set, plot a single cut from it and perform fitting on it with simple functions
(currently the Gaussian and Lorentzian are available). Durin initial initialization this is of great importance as to refine
the UB matrix, find the A3 offset or set up the goniometers. As it is only intented to deal with one 1D set at a time,
no functionality is currently developed to display more than 1 at a time. However, one can cycle through the provided
data both along the different scan parameters and data values.

Below is a table of the shortcuts available in the different states of the program:

All States Key
Quit q
Copy current values ctrl+c
Cycle up in data up
Cycle down in data down
Cycle up in scan parameter right
Cycle down in scan parameter left

The initial window shown consists of a text part at the top and a plot of the current data below. This initial window
allows the following key presses:

Initial State Key
Initialize fittng i or ctrl+i

By pressing ‘i’ or ‘ctrl+i’ one starts the fitting. Here one can change between different fit functions. These are currently
limited to a Gaussian and a Lorentzian function. Having choosen the fitting function one moves the mouse onto the
canvas and left clicks corresponding to the guess one have for the parameter(s) shown in bold font (multiple parameters
choosen depending on the fit function).

8 Chapter 2. Tutorials

MJOLNIR Documentation, Release 1.0

Fitting State Key
Choose Gaussian function 0
Choose Lorentzian function 1
Execute fit e
Print current fit to terminal i or ctrl+i
Choose guess for bold parameters leftmouseclick
Cycle backwards in parameters r

When the initial guess is satisfactory one presses ‘e’ to execute the fit. The x and y data is then fitted with the shown
parameters as initial guesses and the errorbars as absolute standard diviations by the scipy.optimize.curve_fit function.

Note: Errorbars being zero is reset to 1 and fit is performed with the least squares algorithm.

After a fit execution the found parameters are written in place of the guess parameters together with the square-root of the correlation matrix. (Wrongly) Assuming no correlation between parameters, the fitting variances
are given by the diagonal elements. By pressing ‘ctrl+c’ the fitted parameters are copied to the clipboard. If
another fit is wanted, one can press ‘i’ or ‘ctrl+i’ to initialize another fit.

Executed State Key
Initialize another fit i

Further shortcuts corresponds to the standard keys of Matplotlib shortcuts.

2.1.6 Convert data to Q and Omega

With the above normalization table created, on can easily convert raw data files using the method in the DataSet called
ConvertDatafile as

1 from MJOLNIR.Data import DataSet
2 def test_Convert_Data(save=False):
3 DataFile = ['Data/camea2018n000137.hdf']
4

5 dataset = DataSet.DataSet(dataFiles=DataFile)
6 dataset.convertDataFile(saveLocation='Data/',saveFile=save)
7

8

9 if __name__ == '__main__':
10 test_Convert_Data(True)

The code then converts the scan files, be it either Ei, A4, or A3 scan, and saves it into a new HDF files following the
Nexus NXsqom data convention. This is followed in order to facilitate easy interfacing with other software later used.
The location of the converted file is the same as the original but the new file has the ending .nxs. Furthermore, in order
to store all information and ensure that no data is lost, all information already present in the raw data file is copied into
the new. This also include the original raw data counts.

2.1.7 Bin data and visualize

Having converted the data into the Nexus NXsqom format, one wants to both rebin the data and visualize it. As
different detector pixels covers different positions in reciprocal space, one needs to rebin the data in order to avoid
large areas of no data. This is done using the method in the DataSet called binData3D. As input one needs to provide
the step size in the x, y, and z directions, the 3D position and intensity. Furthermore, normalization and monitor count

2.1. Scripting Tutorials 9

https://matplotlib.org/users/navigation_toolbar.html#navigation-keyboard-shortcuts

MJOLNIR Documentation, Release 1.0

can be specified in order to also bin these. Returned is the rebinned data together with normalization and monitor
count, if applicable, and the bins used.

10 Chapter 2. Tutorials

MJOLNIR Documentation, Release 1.0

1 from MJOLNIR.Data import
→˓DataSet,Viewer3D

2 def test_Binning_data(view =
→˓False):

3 import numpy as np
4 import h5py as hdf
5 import matplotlib.pyplot

→˓as plt
6 fileName = 'Data/

→˓camea2018n000137.hdf'
7 ds = DataSet.

→˓DataSet(dataFiles=fileName)
8 ds.convertDataFile()
9

10 I = ds.convertedFiles[0].I
11 qx = ds.convertedFiles[0].

→˓qx
12 qy = ds.convertedFiles[0].

→˓qy
13 energy = ds.

→˓convertedFiles[0].energy
14 Norm = ds.

→˓convertedFiles[0].Norm
15 Monitor = ds.

→˓convertedFiles[0].Monitor
16 title = 'Magnon

→˓ComponentA3Scan'
17

18 pos = [qx,qy,energy]
19

20 Data,bins = DataSet.
→˓binData3D(0.02,0.02,0.1,pos,
→˓I,norm=Norm,mon=Monitor)

21 import warnings
22 warnings.simplefilter(

→˓"ignore")
23 Intensity = np.

→˓divide(Data[0]*Data[3],
→˓Data[1]*Data[2])

24 warnings.simplefilter('once
→˓')

25

26 Viewer = Viewer3D.
→˓Viewer3D(Intensity,bins,
→˓axis=2)

27

28 Viewer.caxis=(0,40)
29

30 Viewer.ax.set_
→˓title(str(title)[2:-1])

31 if view:
32 plt.show()
33 else:
34 if os.path.exists(

→˓'Data/camea2018n000137.nxs'):
35 os.remove('Data/

→˓camea2018n000137.nxs')
36

37

Binning of the converted data into Qx and Qy bins of
size 0.02 AA and energy in 0.1 meV. Intensity is calcu-
lated and with the bins passed to the visualizer.

Cut through data along the energy direction showing Qx
and Qy for a phonon scan at the energy 1.5 meV.

Cut of data along the Qx direction. Cut of data along the Qy direction.

2.1. Scripting Tutorials 11

MJOLNIR Documentation, Release 1.0

The bins and calculated intensity is then passed on to the Viewer3D object, that generates a matplotlib figure. This
plot is made interactive through the slider in the bottom, that shows the current position along the axis as well as the
value of this. By pressing the up/down arrows (or +/- buttons as well as scrolling) one can change this value and thus
investigate the third dimension. By default the energy direction is chosen but it can be changed by pressing the 0, 1,
or 2 numerical buttons. This is to be understood as which direction is to be sliced. Further, by clicking on the plot,
the x and y value corresponding to the point is printed to the terminal. This is then intented to be used in further data
treatment when cuts are needed.

2.1.8 Full data treatment

Full example of the data treatment starting from the instrument definitions provided in the XML file, through genera-
tion of normalization table using 8 software pixels, and to data conversion, rebinning and visualization.

12 Chapter 2. Tutorials

MJOLNIR Documentation, Release 1.0

1 from MJOLNIR.Data import
→˓DataSet,Viewer3D

2 def test_Full_
→˓example(save=False,
→˓show=False):

3 import warnings
4 import matplotlib.pyplot

→˓as plt
5 import numpy as np
6 DataFile = 'Data/

→˓camea2018n000017.hdf'
7

8 dataset = DataSet.
→˓DataSet(dataFiles=DataFile)

9 dataset.
→˓convertDataFile(saveLocation=
→˓'Data/',saveFile=save)

10 viewer = dataset.View3D(0.
→˓02,0.02,0.1,rlu=False)

11

12 viewer.caxis=(0,40)
13 if show:
14 plt.show()
15

16 if __name__=='__main__':
17 test_Full_example(False,

→˓True)
18

Binning of the converted data into Qx and Qy bins of
size 0.02 AA and energy in 0.1 meV. Intensity is calcu-
lated and with the bins passed to the visualizer.

Cut through data along the energy direction showing Qx
and Qy for a phonon scan at the energy 1.5 meV.

Cut of data along the Qx direction. Cut of data along the Qy direction.

2.1.9 Full data treatment without Viewer3D

Full example of a data treatment workflow starting from raw h5 files and ending in a plot. The treatment is done in
four steps signified in the code by the comments:

• Convert raw data from h5 to nxs (NXSqom) data format

• Open converted files and extract intensities and measurement positions from them

• Bin the data using polar binning and calculated the intensity for each point

• Plot an energy slice of the data set in a regular Matplotlib figure

2.1. Scripting Tutorials 13

MJOLNIR Documentation, Release 1.0

1 from MJOLNIR.Data import DataSet
2 def test_Full_example_without_Viewer3D(show=False):
3 import numpy as np
4 import matplotlib.pyplot as plt
5

6 # Convert raw data to NXSqom
7

8 DataFile=['Data/camea2018n000137.hdf']
9 DS = DataSet.DataSet(dataFiles=DataFile)

10 DS.convertDataFile(saveFile=False)
11

12 # Extract all the data
13 I,qx,qy,energy,Norm,Monitor = DS.I,DS.qx,DS.qy,DS.energy,DS.Norm,DS.

→˓Monitor
14

15 # Reshape it
16 I = np.concatenate(I)
17 qx = np.concatenate(qx)
18 qy = np.concatenate(qy)
19 energy = np.concatenate(energy)
20 Norm = np.concatenate(Norm)
21 Monitor = np.concatenate(Monitor)
22

23 # Bin data in polar coordinates
24

25 r = np.linalg.norm([qx,qy],axis=0)
26 theta = np.arctan2(qy,qx)
27

28 [I_bin,Monitor_bin,Normalization_bin,NormCount_bin],[r_bin,theta_bin,
→˓energy_bin] = \

29 DataSet.binData3D(0.01,np.deg2rad(1.0),0.5,[r.flatten(),theta.flatten(),
→˓energy.flatten()],data=I,norm=Norm,mon=Monitor)

30 Qx = np.cos(theta_bin)*r_bin
31 Qy = np.sin(theta_bin)*r_bin
32

33

34 Int = np.divide(I_bin*NormCount_bin,Monitor_bin*Normalization_bin)
35

36 # Plot energy slice of data
37 Eslice=2
38

39 VMIN=0
40 VMAX=20
41

42 fig=plt.figure(figsize=(8,8))
43 pc = plt.pcolormesh(Qx[:,:,Eslice].T,Qy[:,:,Eslice].T,Int[:,:,Eslice].T,

→˓vmin=VMIN,vmax=VMAX,zorder=10)
44 ax = fig.add_subplot(111)
45

46

47 plt.ylabel('Q_y [1/AA]')
48 plt.xlabel('Q_x [1/AA]')
49 plt.title('$\hbar \omega =$ {:.02f}'.format(np.mean(energy_bin[:,:,

→˓Eslice])) + ' meV')
50 plt.axis([-1.8, 1.8, -1.8, 1.8])
51 ax.set_aspect('equal', 'datalim')
52 plt.grid(True)

(continues on next page)

14 Chapter 2. Tutorials

MJOLNIR Documentation, Release 1.0

(continued from previous page)

53

54 plt.colorbar(pc)
55 if show:
56 plt.show()
57

58 if __name__=='__main__':
59 test_Full_example_without_Viewer3D(True)

In the above example, there are two key points in the treatment; first the binning in polar coordinates which takes
advantage of the measurement positions of the instrument setup (equidistant A3 or theta steps), second that the binned
data from the binning method is of e.g. shape (20,23,6) while the position arrays contains the bin edges and have thus
the shape (21,24,7). This makes it easy to perform 2D cuts of the data along the primal axis (radius, angle and energy)
by simply slicing data using regular slicing tools.

The arguments vmin and vmax controls the colorbar and thus the colors corresponding to different intensities.

Note: The way that Matplotlib currently has implimented the pcolormesh method for plotting 2D data requires
the position matrices and data matrix to be transposed before plotting. Further, applying the ‘gouraud’ interpolation
scheme provided by the method, one needs to give as arguments the centers of the binned data instead of the bin edges.
This can simply be given by defining e.g. a new Qx by QX = 0.5*(Qx[:-1,:-1,Eslice]+Qx[1:,1:,Eslice])

Figure created in the above script showing the second energy (5.60 meV) transfer plane.

2.1.10 Powder cutting and visualization

When having a converted data file of a powder sample, one might be interested in the powder signal instead of
the (qx,qy) intensities. These can both be found and plotted by using the cutPowder and plotCutPowder methods
of the DataSet object. The three different calls below all produce the same data treatment, i.e. intensity, monitor,
normalization, and normalization count as a function of length of q and energy transfer. It has been choosen, with the
use of qMinBin=0.01 and tolerance=0.125 that the length of q and the energies are binned with minimum sizes 0.01
1/A and 0.125 meV.

2.1. Scripting Tutorials 15

MJOLNIR Documentation, Release 1.0

1 from MJOLNIR.Data import DataSet
2 from MJOLNIR import _tools
3 def test_Powder(show=False):
4 import matplotlib.pyplot as plt
5 file = 'Data/camea2018n000137.hdf'
6

7 DataObj = DataSet.DataSet(dataFiles=file)
8 DataObj.convertDataFile()
9 I = DataObj.I

10 qx = DataObj.qx
11 qy = DataObj.qy
12 energy = DataObj.energy
13 Norm = DataObj.Norm
14 Monitor = DataObj.Monitor
15

16 EBinEdges = _tools.binEdges(energy,tolerance=0.125)
17

18 ax,Data,qbins = DataObj.plotCutPowder(EBinEdges,qMinBin=0.05)
19 plt.colorbar(ax.pmeshs[0])
20

21 ax2,Data2,qbins2 = DataSet.plotCutPowder([qx,qy,energy],I,Norm,Monitor,
→˓EBinEdges,qMinBin=0.05)

22 plt.colorbar(ax2.pmeshs[0])
23

24 Data3,qbins3 = DataObj.cutPowder(EBinEdges)
25

26 ax2.set_clim(0,0.01)
27 if show:
28 plt.show()
29

30 if __name__=='__main__':
31 test_Powder(True)

Notice in line 21 the call to the axis object chaning all of the c-axis for the figure. This method has been added in the
plotting routine to ease the change of intensity as the plot consists of many constant energy plots. Furthermore, when
hovering over a pixel in the plot, the q length, energy and intensity of the nearest pixel center is shown. This is to
make the binning size somewhat transparent and also ensure that the user sees the current value of the pixel, and not
an interpolation.

Figure created by the DataSet method plotCutPowder showing a phonon dispersion as well as a spurious signal.

Figure created by the function plotCutPowder showing the same data but with the c-axis changed.

16 Chapter 2. Tutorials

MJOLNIR Documentation, Release 1.0

2.1.11 Q-energy cutting and visualization in 1 and 2 dimensions

One feature needed when dealing with 3D intensity data is to be able to cut from q one point to another and investigate
the energy dependency of the intensity. This can be done by invoking the cutQE or plotCutQE. These methods perform
constant energy cuts between the given q points (q1 and q2) and then stiches them together. When hovering over a
position, the nearest qx, qy, and energy center is shown as well as its intensity.

1 from MJOLNIR.Data import DataSet
2 from MJOLNIR import _tools
3 def test_cut2D(show=False):
4 import numpy as np
5 import matplotlib.pyplot as plt
6 file = 'Data/camea2018n000137.hdf'
7 DataObj = DataSet.DataSet(dataFiles=file)
8 DataObj.convertDataFile()
9 energy = DataObj.energy

10

11 EnergyBins = _tools.binEdges(energy,tolerance=0.125)
12 q1 = np.array([1.0,0])
13 q2 = np.array([0,1.0])
14 width = 0.1 # 1/A
15 minPixel = 0.01
16

17 ax,DataList,qBnLit,centerPos,binDIstance = DataObj.plotCutQE(q1,q2,width,
→˓minPixel,EnergyBins,rlu=False)

18 plt.colorbar(ax.pmeshs[0])
19

20 if __name__ == '__main__':
21 test_cut2D(True)

Figure created by the DataSet method plotCutQE showing a phonon dispersion when cutting from (1,0) to (0,1). The
c-axis is simply found from the minimal and maximal values of the binned intensities.

. . . figure:: ../../Tutorials/cut2DPlotCLim.png .. :width: 45%

If one instead of a full map is only interested in a 1D cut, this can be achieved by the use of the (plot)cut1D method.
It takes the same types of arguments as the 2D cutter with the exeption of maximal and minimal energies instead of
energy bins.

1 from MJOLNIR.Data import DataSet
2 from MJOLNIR import _tools
3 def test_cut2D(show=False):

(continues on next page)

2.1. Scripting Tutorials 17

MJOLNIR Documentation, Release 1.0

(continued from previous page)

4 import numpy as np
5 import matplotlib.pyplot as plt
6 file = 'Data/camea2018n000137.hdf'
7

8 ## Cut and plot 1D
9 ax2,DataList,Bins,binCenter,binDistance = DataObj.plotCut1D(q1,q2,width,

→˓minPixel,rlu=False,Emin = 0.2, Emax = 1.7,plotCoverage=True)
10 if show:
11

12

13 if __name__ == '__main__':
14 test_cut2D(True)

The above code cuts along the same direction as the 2D tool, but produces the two pictures below

Figure created by the DataSet method plotCut1D showing a cut through a phonon dispersion when cutting from (1,0)
to (0,1) and summing energies between 5.2 meV and 5.7 meV.

The points used in the binning algorithm where the black boxes denotes individual bins.

2.1.12 Plotting of Q plane using binnings

18 Chapter 2. Tutorials

MJOLNIR Documentation, Release 1.0

1 from MJOLNIR.Data import DataSet
2 def test_Plot_Q_Plane(save=False):
3 import numpy as np
4 import matplotlib.pyplot as plt
5 file = 'Data/camea2018n000137.hdf'
6 Data = DataSet.DataSet(dataFiles=file)
7 Data.convertDataFile()
8 EMin = np.min(Data.energy)+1.5
9 EMax = EMin+0.05

10

11 ax = Data.plotQPlane(EMin,EMax,binning='polar',xBinTolerance=0.025,
→˓yBinTolerance=0.025,

12 enlargen=False,log=False,ax=None,RLUPlot=True,vmin=0,
→˓vmax=10)

13 plt.colorbar(ax.pmeshs[0])
14 ax.set_clim(0,10)
15

16 ax2 = Data.plotQPlane(EMin,EMax,binning='xy',xBinTolerance=0.025,
→˓yBinTolerance=0.025,

17 enlargen=False,log=False,ax=None,RLUPlot=True,vmin=0,
→˓vmax=10)

18

19 plt.colorbar(ax2.pmeshs[0])
20

21 if save:
22 fig1 = plt.figure(1)
23 fig2 = plt.figure(2)
24 fig1.savefig('Tutorials/PlotQPlanePolar.png')
25 fig2.savefig('Tutorials/PlotQPlaneXY.png')
26 plt.show()
27

28 if __name__ == '__main__':
29 test_Plot_Q_Plane(True)

Creation of two plots of the Magnon_ComponentA3Scan.nxs converted data. Firstly, a polar plot is created on a
reciprocal lattice axes, with adaptive bins and non-logarithmic intensities.

Plotting of intensities measured between ~1.29 meV and ~1.34 meV using adaptive polar binning.

Plotting of intensities measured between ~1.29 meV and ~1.34 meV using equi-sized rectangular binning. As the
binning is chosen too fine a lot of holes appear in the plot.

2.1. Scripting Tutorials 19

MJOLNIR Documentation, Release 1.0

2.1.13 Plotting all pixels binned in A3 and A4

Instead of performing rebinning of the measured datapoints in to some sort of regular grid, one could instead try to
create a grid that fits the data measured. This is the basis idea behind the plotA3A4 method. It takes a list of files,
creates a commong tesselation using the voronoi method in A3-A4 coordinates and maps this into Q-space.

1 from MJOLNIR.Data import DataSet
2 def test_PlotA3A4(save=False):
3 import matplotlib.pyplot as plt
4 import numpy as np
5

6 File = 'Data/camea2018n000137.hdf'
7 DS = DataSet.DataSet(dataFiles=File)
8 DS.convertDataFile()
9 files = DS.convertedFiles

10

11

12 planes2 = list(np.arange(64).reshape(8,8)) # Plot all planes binned with
→˓8 pixels together

13 ax = [DS.createRLUAxes() for _ in range(len(planes2))] # Create custom
→˓axes for plotting

14

15 ax2 = DS.plotA3A4(files,planes=planes2,ax=ax)
16

17 counter = 0
18 for ax in ax2: # loop through axes to increase size and save

(continues on next page)

20 Chapter 2. Tutorials

MJOLNIR Documentation, Release 1.0

(continued from previous page)

19 fig = ax.get_figure()
20 fig.set_size_inches(10.5, 10.5, forward=True)
21

22 if save:
23 fig.savefig('A3A4/{:03d}.png'.format(counter),format='png')
24 counter+=1
25 if save:
26 plt.show()
27

28 if __name__=='__main__':
29 test_PlotA3A4(True)
30

31

As shown above one can provide an axis or a list of axes into which the plot is to be made. This is especially usefull
if combined with the RLU axis method calculated in the DataSet object as one then gets the plot in reciprocal lattice
units directly.

2.1. Scripting Tutorials 21

MJOLNIR Documentation, Release 1.0

Binning of planes 0 through 7 into one plot. This figure is com-
pletely green due to no intensity measured during simulation.

Binning of planes 8 through 15 into one plot.

Binning of planes 16 through 23 into one plot.

Binning of planes 24 through 31 into one
plot.

Binning of planes 32 through 39 into one plot.

Binning of planes 40 through 47 into one
plot.

Binning of planes 48 through 55 into one plot.

Binning of planes 56 through 63 into one
plot.

22 Chapter 2. Tutorials

MJOLNIR Documentation, Release 1.0

Warning: This Page is not up to date!

2.1.14 Plotting all pixels binned in Q space

Instead of performing rebinning of the measured datapoints in to some sort of regular grid, one could instead try to
create a grid that fits the data measured. This is the basis idea behind the plotA3A4 method. It takes a list of files,
creates a commong tesselation using the voronoi method in Q coordinates.

1

2 import matplotlib.pyplot as plt
3 import numpy as np
4 from MJOLNIR.Data import DataSet
5 File1 = '../TestData/T0Phonon10meV.nxs'
6 File2 = '../TestData/T0Phonon10meV93_5A4.nxs'
7

8

9 DS = DataSet.DataSet(convertedFiles=[File1,File2])
10

11 files = DS.convertedFiles
12

13

14 planes2 = list(np.arange(64).reshape(8,8))[1:] # Plot all planes binned
→˓with 8 pixels together

15 ax = [DS.createRLUAxes() for _ in range(len(planes2))] # Create custom
→˓axes for plotting

16

17 ax2 = DS.plotQPatches([files[0]],planes=planes2,ax=ax,binningDecimals=2,
→˓A4Extend=2,A3Extend=3)

18

19 counter = 0
20 for ax in ax2: # loop through axes to increase size and save
21 fig = ax.get_figure()
22 fig.set_size_inches(10.5, 10.5, forward=True)
23 fig.tight_layout()
24 fig.savefig('QPatches/{:03d}.png'.format(counter),format='png')
25 counter+=1
26 plt.show()

As shown above one can provide an axis or a list of axes into which the plot is to be made. This is especially usefull
if combined with the RLU axis method calculated in the DataSet object as one then gets the plot in reciprocal lattice
units directly.

Warning: However, this method is really slow and takes approximately 3.5 minutes when combining 2 files and
8 planes.

Warning: This method does not work fully yet due to inconsistensies in the calibration file of the data.

2.1. Scripting Tutorials 23

MJOLNIR Documentation, Release 1.0

Binning of planes 0 through 7 into one plot. This figure is com-
pletely green due to no intensity measured during simulation.

Binning of planes 8 through 15 into one plot.

Binning of planes 16 through 23 into one plot.

Binning of planes 24 through 31 into one
plot.

Binning of planes 32 through 39 into one plot.

Binning of planes 40 through 47 into one
plot.

Binning of planes 48 through 55 into one plot.

Binning of planes 56 through 63 into one
plot.

24 Chapter 2. Tutorials

MJOLNIR Documentation, Release 1.0

2.2 Command Line Tutorials

Despite the full usability and customizability of using a scripting interface to the visualization software, during an
experiment or in order to quickly get an overview of data one is more interested in just inspecting the data using a
standerdized set of plotting parameters. It could also be that Python is not a language the user masters and thus a
command line interface might be easier when simple visualization is needed.

In any case, the following tutorials seek to introduce and explain the possibilities of using the command line scripts
to quickly plot different parts of the data. However, running the scripts from the command line is operation system
dependent. That is, if you are running either Linux or Mac, chances are that you can simply run:

python ScriptFile.py *args

or if python has been installed as an environment variable:

./ScriptFile.py *args

where in the latter case the shebang-command in the top of the scripting file is run.

2.2.1 Normalization inspection

Inspection of the current normalization table used to convert the raw data measured into actual scattering intensities
is of great importance. It holds the information of energy and A4 value of all of the individual pixels and does thus
govern the convertion into reciprocal space. Furthermore, it contains the normalization needed to take care of detector
sensitivity, space angle coverage, as well as analyser efficiency. Due to this vital role, it has been made possible to
easily plot the contents of the calibration table.

The script CalibrationInspector.py and it has the following help text:

$ python CalibrationInspector.py -h
usage: CalibrationInspector.py [-h] [-s SAVE] [-p [PLOTLIST [PLOTLIST ...]]]

[-b BINNING]
[DataFile]

Inspection tool to visialize calibration tables in a data file.

positional arguments:
DataFile Data file from which calibration table is to be

plotted. If none provided file dialog will appear.

optional arguments:
-h, --help show this help message and exit
-s SAVE, --save SAVE Location to which the generated file will be saved.
-p [PLOTLIST [PLOTLIST ...]], --plot [PLOTLIST [PLOTLIST ...]]

List of wanted plots to be generated. Should be
"A4","Normalization","Ef","EfOverview". Default "A4".

-b BINNING, --binning BINNING
Binning to be inspected. Default '8'

First of all, if the program is run without any arguments, a file dialog will appear asking for a file to be plotted. From
this file, the default plots will be created and the file directory is saved in an external settings file such that next time
the program is run the file dialog will open on this location.

As seen in the description, the user can choose which plots are to be generated and whether to save the results or simply
inspect them visually. As a default the script uses the 8 pixel binning and creates an A4 plot. This can be changed
by invoking the -b binning or -p PlotType flags for binnning and plotting respectively. The binning choosen should as

2.2. Command Line Tutorials 25

MJOLNIR Documentation, Release 1.0

one of the provided in the file (usually 1, 3, or 8), and the plotting possibilities are “A4”,”Normalization”,”Ef”, and
“EfOverview”.

Providing a saving location with the use of the -s savelocation or –save savelocation makes the script save the figures
in the corresponding path. It should be a directory and not a file path. The figures are saved with selfexplanartory titles
in a png format such as they can be opened on all OS’s without problems.

Example

An example of the four different figures produces is the following, when choosing binning 1, 3, and 8:

Binning 1:

Binning 3

Binning 8

26 Chapter 2. Tutorials

MJOLNIR Documentation, Release 1.0

2.2. Command Line Tutorials 27

MJOLNIR Documentation, Release 1.0

28 Chapter 2. Tutorials

MJOLNIR Documentation, Release 1.0

2.2. Command Line Tutorials 29

MJOLNIR Documentation, Release 1.0

30 Chapter 2. Tutorials

CHAPTER 3

MJOLNIR Module

Something about MJOLNIR

3.1 Geometry Module

The geometry module is created in order to build a virtual copy of the instrument in the MJOLNIR. This is done using
the following classes

GeometryConcept.GeometryConcept Abstract geometry concept.
GeometryConcept.GeometryObject Physical geometry object on which other physical

MJOLNIR components are build.
Detector.Detector Generic detector being the base class of all detectors.
Detector.TubeDetector1D 1D Tube detector used at PSI.
Analyser.Analyser Generic analyser object.
Analyser.FlatAnalyser Simple flat analyser.
Wedge.Wedge Wedge object to keep track of analysers and detectors.
Instrument.Instrument Instrument object used to calculated analytic scattering

coverage.

Below is an extended description of the different classes and their methods.

3.1.1 Geometry base classes

General object from which other geometry objects inherits.

class GeometryConcept.GeometryConcept(position=(0, 0, 0))
Abstract geometry concept. Used as base class for Wedge and Instrument.

load(filename)
Method to load an object from a pickled file.

31

MJOLNIR Documentation, Release 1.0

plot(ax)
Args:

• ax (matplotlib axis): 3D matplotlib axis into whicht plotting is performed

Warning: Method not incorporated, but acts as virtual method.

position
Kwargs:

• Position (3vector): Position of object (default [0,0,0])

Raises:

• AttributeError

• NotImplementedError

>>> GenericConcept = GeometryConcept(position=(0.0,1.0,0.0))
>>> print(GenericConcept.position)
(0.0,1.0,0.0)

class GeometryConcept.GeometryObject(position=(0.0, 0.0, 0.0), direction=(0, 0, 1))
Physical geometry object on which other physical MJOLNIR components are build. All of the components
needed to create an instrument should inherit from this class in order enforce a uniform interface.

Kwargs:

• Position (3vector): Position of object (default [0,0,0])

• Direction (3vector): Direction along which the object points (default [0,0,1])

Raises:

• AttributeError

>>> GenericObject = GeometryObject(position=(0.0,1.0,0.0),direction=(1.0,0,0))
>>> print(GenericObject.position)
(0.0,1.0,0.0)

3.1.2 Detectors

class Detector.Detector(position, direction)
Generic detector being the base class of all detectors.

args:

• Position (3vector): Position of object (default [0,0,0])

• Direction (3vector): Direction along which the object points (default [0,0,1])

raises:

• NotImplementedError

plot(ax, offset=(0.0, 0.0, 0.0))
Args:

• ax (matplotlib.pyplot 3d axis): Axis object into which the detector is plotted

32 Chapter 3. MJOLNIR Module

MJOLNIR Documentation, Release 1.0

Kwargs:

• offset (3vector): Offset of detector due to bank position (default [0,0,0])

>>> GenericDetector = Detector(position=(0.0,1.0,0.0),direction=(1.0,0,0))
>>> GenericDetector.plot(ax)
Plots detector tube in provided axis object.

class Detector.TubeDetector1D(position, direction, length=0.25, pixels=1024, diameter=0.02,
split=[])

1D Tube detector used at PSI. The detector is assumed to be a perfect cylinder consisting of pixels.

Args:

• Position (3vector): Position of object (default [0,0,0])

• Direction (3vector): Direction along which the object points (default [0,0,1])

Kwargs:

• length (float): Length of detector tube in meters (default 0.25)

• pixels (int): Number of pixels (default 1024)

• diameter (float): Diameter of tube in meters (default 0.02)

• split (list int): Edge pixels for slitting the tube into areas lidt by analysers (default
[0,57,57*2,57*3,57*4,57*5,57*6,57*7,57*8])

split (list int): Edge pixels for slitting the tube into areas lidt by analysers (default
[0,57,57*2,57*3,57*4,57*5,57*6,57*7,57*8])

Raises:

• AttributeError

getPixelPositions()
Return pixel positions relative to center.

plot(ax, offset=(0.0, 0.0, 0.0), n=100)
Args:

• ax (matplotlib.pyplot 3d axis): Axis object into which the detector is plotted

Kwargs:

• offset (3vector): Offset of detector due to bank position (default [0,0,0])

• n (int): Number of points on the surface to be plotted (default 100)

>>> Detector = TubeDetector1D(position=(0.0,1.0,0.0),direction=(1.0,0,0))
>>> Detector.plot(ax,offset=(0.0,0.0,0.0),n=100)
Plots detector tube in provided axis object.

3.1.3 Analysers

class Analyser.Analyser(position, direction, d_spacing=3.35, mosaicity=60)
Generic analyser object. Base class from which all analysers must inherit.

Args:

• position (float 3): Position of analyser in meters

3.1. Geometry Module 33

MJOLNIR Documentation, Release 1.0

• direction (float 3): Direction of analyser

• d_spacing (float): The d spacing in Anstrom (default 3.35)

• mosaicity (float): The standard deviation of mosaicity in arcminutes (default 60)

plot(ax, offset=(0.0, 0.0, 0.0))
Args:

• ax (matplotlib.pyplot 3d axis): Axis object into which the analyser is plotted

Kwargs:

• offset (3vector): Offset of analuser due to bank position (default [0,0,0])

>>> GenericAnalyser = Analyser(position=(0.0,1.0,0.0),direction=(1.0,0,0))
>>> GenericAnalyser.plot(ax)

class Analyser.FlatAnalyser(position, direction, d_spacing=3.35, mosaicity=60, width=0.05,
height=0.1)

Simple flat analyser.

Args:

• Position (3vector): Position of object (default [0,0,0])

• Direction (3vector): Direction along which the object points (default [0,0,1])

Kwargs:

• d_spacing (float): D spacing of analyser in Angstrom

• mosaicity (float): Mosaicity in arcminutes

• length (float): Length of detector tube in meters (default 0.25)

• pixels (int): Number of pixels (default 456)

• diameter (float): Diameter of tube in meters (default 0.02)

Raises:

• AttributeError

• NotImplimentedError

plot(ax, offset=array([0, 0, 0]), n=100)
Args:

• ax (matplotlib.pyplot 3d axis): Axis object into which the analyser is plotted

Kwargs:

• offset (3vector): Offset of detector due to bank position (default [0,0,0])

• n (int): Number of points on the surface to be plotted (default 100)

>>> Analyser = FlatAnalyser(position=(0.0,1.0,0.0),direction=(1.0,0,0))
>>> Analyser.plot(ax,offset=(0.0,0.0,0.0),n=100)

34 Chapter 3. MJOLNIR Module

MJOLNIR Documentation, Release 1.0

3.1.4 Wedge

class Wedge.Wedge(position=(0.0, 0.0, 0.0), detectors=[], analysers=[], concept=’ManyToMany’,
**kwargs)

Wedge object to keep track of analysers and detectors. To be used as a storage object and facilitate easy move-
ment of multiple detectors and analysers as once.

Args:

• position (float 3): Position of wedge (default (0,0,0))

Kwargs:

• detectors (list or single detector): Either a list or a single detector (default empty)

• analysers (list or single analyser): Either a list or a single analyser (default empty)

• concept (string “ManyToMany” or “OneToOne”): Setting to controle if there is a “one to one” correspon-
dence between analysers and detectors or a “many to many” relationship.

Note: A wedge does not have a direction. The direction of analysers and detectors are to be set individually.

append(Object)
Append Object(s) to corresponding list.

Args:

• object (Detector(s)/Analyser(s)): Single detector/analyser of list of detectors/analysers

calculateDetectorAnalyserPositions()
Find neutron position on analyser and detector. Assuming that the analyser is in the z=0 plane.

plot(ax, offset=(0, 0, 0))
Recursive plotting routine.

3.1.5 Instrument

class Instrument.Instrument(position=(0, 0, 0), wedges=[], fileName=”, **kwargs)
Instrument object used to calculated analytic scattering coverage. Based on the GeometryConcept object it
contains all needed information about the setup used in further calculations.

Kwargs:

• position (float 3d): Position of the instrument alwasy at origin(?) (default (0,0,0))

• wedges (list of wedges or single wedge): Wedge or list of wedges which the instrument consists of (default
empty)

• fileName (string): Filename of xml file (ending in xml). To load binary files use self.load(filename).

Raises:

• AttributeError

append(wedge)
Append wedge(s) to instrument.

Args

• wedge (Wedge(s)): Single wedge or list of wedges

3.1. Geometry Module 35

MJOLNIR Documentation, Release 1.0

generateCAMEAXML(fileName)
Generate CAMEA XML file to be used as instrument file.

Args:

• fileName: Name of file to be saved (required)

generateCalibration(Vanadiumdatafile, A4datafile=False, savelocation=’calibration/’, ta-
bles=[’Single’, ’PrismaticLowDefinition’, ’PrismaticHighDefinition’],
plot=False, mask=True)

Method to generate look-up tables for normalization. Saves calibration file(s) as ‘Calibration_Np.calib’,
where Np is the number of pixels.

Generates 4 different tables:

• Prismatic High Definition (8 pixels/energy or 64 pixels/detector)

• Prismatic Low Definition (3 pixels/energy or 24 pixels/detector)

• Single (1 pixel/energy or 8 pixels/detector)

• Number (integer)

Args:

• Vanadiumdatafile (string): String to single data file used for normalization, Vanadium Ei scan (re-
quired).

Kwargs:

• A4datafile (string): String to single data file used for normalization, AlO A4 scan (default False).

• savelocation (string): String to save location folder (calibration)

• tables (list): List of needed conversion tables (Default: [‘Sin-
gle’,’PrismaticLowDefinition’,’PrismaticHighDefinition’], increasing number of pixels).

• plot (boolean): Set to True if pictures of all fit are to be stored in savelocation

• mask (boolean): If True the lower 100 pixels are set to 0

Warning: At the moment, the active detector area is defined by NumberOfSigmas (currently 3) times
the Guassian width of Vanadium peaks.

initialize()
Method to initialize and perform analytical calulations of scattering quantities. Initializes:

• A4: Matrix holding pixel A4. Shape (len(Wedges),len(detectors),pixels)

• Ef: Matrix holding pixel Ef. Shape (len(Wedges),len(detectors),pixels)

plot(ax)
Recursive plotting routine.

saveXML(fileName)
Method for saving current file as XML in fileName.

3.2 Statistics Module

This is the documentation part intended for the explanation of the statistics module. Due to the philosophy of this
software suit where data visualization and actual data fitting and feature extraction are decoupled, this section is

36 Chapter 3. MJOLNIR Module

MJOLNIR Documentation, Release 1.0

dedicated to explanation of the neede methods and workflows. The inteded methods could include:

• Fit using either Gaussian or Poisson statistics for:

– 1D extraction of data from two data points for constant energy

– 1D extraction of data from 1 Q position and all energies

– other..

• Advanced fitting routines for multidimensional data (2, 3, or n(?) dimensions) using:

– Modified costfunctions to ensure continuity and breaks allowed for elastic peaks

– Sequental fitting with blurring and rebinning of data to allow for initial fitting and guesses later used
on the full data set

– Constant signal to noise binning using voronoi tesselation to perform importance sampling

• Using swarm or other algorithms with all data fitting tool

3.2.1 Statistics Module

This is the statistics module.

3.3 Data Module

Something about the functionality of the Data module

3.3.1 Data Module

The DataSet object is the interface between the data files and the data treatment and visualziation. It is both responsible
for the conversion of raw ‘.h5’-files into ‘.nxs’-files as well as plotting these. Extracting values from this object results
in a list of values where the first dimension is determined from the number of data files provided.

DataSet.DataSet DataSet object to hold all informations about data.
DataSet.DataSet.convertDataFile Conversion method for converting scan file(s) to hkl file.
DataSet.DataSet.cut1D Wrapper for 1D cut through constant energy plane from

q1 to q2 function returning binned intensity, monitor,
normalization and normcount.

DataSet.DataSet.plotCut1D Plotting wrapper for the cut1D method.
DataSet.DataSet.cutQE Wrapper for cut data into maps of q and intensity be-

tween two q points and given energies.
DataSet.DataSet.plotCutQE Plotting wrapper for the cutQE method.
DataSet.DataSet.cutPowder Cut data powder map with intensity as function of the

length of q and energy.
DataSet.DataSet.plotCutPowder Plotting wrapper for the cutPowder method.
DataSet.DataSet.createRLUAxes Wrapper for the createRLUAxes method.
DataSet.DataSet.plotQPlane Wrapper for plotting tool to show binned intensities in

the Q plane between provided energies.
DataSet.DataSet.cutQELine Method to perform Q-energy cuts from a variable num-

ber of points.
DataSet.DataSet.plotCutQELine Plotting wrapper for the cutQELine method.

Continued on next page

3.3. Data Module 37

MJOLNIR Documentation, Release 1.0

Table 2 – continued from previous page
DataSet.binData3D 3D binning of data.
DataSet.boundaryQ Calculate the boundary of a given scan in Q space

A4Extend: in degrees A3Extend: in degrees
DataSet.calculateGrid3D Generate 3D grid with centers given by X,Y, and Z.
DataSet.createRLUAxes Create a reciprocal lattice plot for a given DataSet ob-

ject.
DataSet.cut1D Perform 1D cut through constant energy plane from q1

to q2 returning binned intensity, monitor, normalization
and normcount.

DataSet.cut1DE Perform 1D cut through constant Q point returning
binned intensity, monitor, normalization and norm-
count.

DataSet.cutPowder Cut data powder map with intensity as function of the
length of q and energy.

DataSet.cutQE Cut data into maps of q and intensity between two q
points and given energies.

DataSet.plotCut1D Plotting wrapper for the cut1D method.
DataSet.plotCutPowder Plotting wrapper for the cutPowder method.
DataSet.plotCutQE Plotting wrapper for the cutQE method.
DataSet.plotQPlane Plotting tool to show binned intensities in the Q plane

between provided energies.
DataFile.DataFile Object to load and keep track of HdF files and their con-

versions

This is the data module inteted to be used as a stand-alone data reduction and visualization.

DataSet Object and Methods

Object to take care of all data conversion and treatment taking it from raw hdf5 files obtained at the instrument into
rebinned data sets converted to S(q,omega).

class DataSet.DataSet(dataFiles=None, normalizationfiles=None, calibrationfiles=None, converted-
Files=None, **kwargs)

DataSet object to hold all informations about data.

Kwargs:

• dataFiles (string, DataFile or list of strings or DataFiles): List of datafiles or DataFile objects to be used in
conversion (default None).

• normalizationfiles (string or list of strings): Location of Vanadium normalization file(s) (default None).

• calibrationfiles (string or list of strings): Location of calibration normalization file(s) (default None).

• convertedFiles (string, DataFile or list of strings): Location of converted data files (default None).

Raises:

• ValueError

• NotImplementedError

View3D(dx, dy, dz, rlu=True, log=False, grid=False)
View data in the Viewer3D object.

Args:

• dx (float): step size in qx

38 Chapter 3. MJOLNIR Module

MJOLNIR Documentation, Release 1.0

• dx (float): step size in qy

• dz (float): step size in E

Kwargs:

• rlu (Bool): If true a rlu axis is used for plotting orthervise qx,qy (Default True).

• log (Bool): If true logarithm of intensity is plotted

If one plots not using RLU, everything is plotted in real units (1/AA), and the Qx and QY is not rotated.
That is, the x axis in energy is not along the projection vector. The cuts of constant Qx and Qy does not
represent any symmetry directions in the sample. However, if one utilizes the RLU flag, first Qx and Qy
are rotated with first HKL vector along the x-axis. This thus means that cuts of constant Qx (or more
correctly along the principal HKL vector) represents a symmetry direction. However, as the data is binned
in equal sized voxels, constant Qy does not necessarily correspond to HKL vector 2 (it will in systems with
90 degrees between the two vectors).

binData3D(dx, dy, dz, rlu=True, dataFiles=None)
Bin a converted data file into voxels with sizes dx*dy*dz. Wrapper for the binData3D functionality.

Args:

• dx (float): step sizes along the x direction (required).

• dy (float): step sizes along the y direction (required).

• dz (float): step sizes along the z direction (required).

Kwargs:

• rlu (bool): If True, the rotate QX,QY is used for binning (default True)

• datafile (string or list of strings): Location(s) of data file to be binned (default converted file in
DataSet).

Raises:

• AttributeError

Returns:

• Datalist: List of converted data files having 4 sub arrays: Intensity(counts), Monitor, Normalization,
Normalization count

• bins: 3 arrays containing edge positions in x, y, and z directions.

convertDataFile(dataFiles=None, binning=8, saveLocation=None, saveFile=True)
Conversion method for converting scan file(s) to hkl file. Converts the given hdf file into NXsqom format
and saves in a file with same name, but of type .nxs. Copies all of the old data file into the new to ensure
complete reduncency. Determins the binning wanted from the file name of normalization file.

Kwargs:

• dataFiles (DataFile, string or list of): File path(s), file must be of hdf format (default self.dataFiles).

• binning (int): Binning to be used when converting files (default 8).

• saveLocation (string): File path to save location of data file(s) (defaults to same as raw file).

• saveFile (bool): If true, the file(s) will be saved as nxs-files. Otherwise they will only persis in
memory.

Raises:

• IOError

3.3. Data Module 39

MJOLNIR Documentation, Release 1.0

• AttributeError

convertToQxQy(HKL)
Convert array or vector of HKL point(s) to corresponding Qx and QY

Args:

• HKL (array): array or vector of HKL point(s)

Returns

• Q (array): Converted HKL points in Qx QY of unrotated coordinate system.

createQEAxes(axis=0, figure=None)
Wrapper for the createRLUAxes method.

Returns:

• ax (Matplotlib axes): Created reciprocal lattice axes.

Note: Uses sample from the first converted data file. However, this should be taken care of by the
comparison of datafiles to ensure same sample and settings.

createRLUAxes(figure=None)
Wrapper for the createRLUAxes method.

Returns:

• ax (Matplotlib axes): Created reciprocal lattice axes.

Note: Uses sample from the first converted data file. However, this should be taken care of by the
comparison of datafiles to ensure same sample and settings.

cut1D(q1, q2, width, minPixel, Emin, Emax, rlu=True, plotCoverage=False, extend=True,
dataFiles=None)

Wrapper for 1D cut through constant energy plane from q1 to q2 function returning binned intensity,
monitor, normalization and normcount. The full width of the line is width while height is given by Emin
and Emax. the minimum step sizes is given by minPixel.

Note: Can only perform cuts for a constant energy plane of definable width.

Args:

• q1 (3D or 2D array): Start position of cut in format (h,k,l) or (qx,qy) depending on rlu flag.

• q2 (3D or 2D array): End position of cut in format (h,k,l) or (qx,qy) depending on rlu flag.

• width (float): Full width of cut in q-plane in 1/AA.

• minPixel (float): Minimal size of binning aling the cutting direction. Points will be binned if they are
closer than minPixel.

• Emin (float): Minimal energy to include in cut.

• Emax (float): Maximal energy to include in cut

Kwargs:

• rlu (bool): If True, coordinates given are interpreted as (h,k,l) otherwise as (qx,qy)

40 Chapter 3. MJOLNIR Module

MJOLNIR Documentation, Release 1.0

• plotCoverage (bool): If True, generates plot of all points in the cutting plane and adds bounding box
of cut (default False).

• extend (bool): Whether or not the cut from q1 to q2 is to be extended throughout the data (default
true)

• dataFiles (list): List of dataFiles to cut (default None). If none, the ones in the object will be used.

Returns:

• Data list (4 arrays): Intensity, monitor count, normalization and normalization counts binned in the
1D cut.

• Bin list (3 arrays): Bin edge positions in plane of size (n+1,3), orthogonal positions of bin edges in
plane of size (2,2), and energy edges of size (2).

cut1DE(E1, E2, q, rlu=True, width=0.02, minPixel=0.1, dataFiles=None)
Perform 1D cut through constant Q point returning binned intensity, monitor, normalization and norm-
count. The width of the cut is given by the width attribute.

Note: Can only perform cuts for a constant energy plane of definable width.

Args:

• E1 (float): Start energy.

• E2 (float): End energy.

• q (3D or 2D vector): Q point

Kwargs:

• rlu (bool): If True, provided Q point is interpreted as (h,k,l) otherwise as (qx,qy), (Deflault true)

• width (float): Full width of cut in q-plane (default 0.02).

• minPixel (float): Minimal size of binning aling the cutting direction. Points will be binned if they are
closer than minPixel (default 0.1).

• dataFiles (list): Data files to be used. If none provided use the ones in self (default None)

Returns:

• Data list (4 arrays): Intensity, monitor count, normalization and normalization counts binned in the
1D cut.

• Bin list (1 array): Bin edge positions in energy

cutPowder(EBinEdges, qMinBin=0.01, dataFiles=None)
Cut data powder map with intensity as function of the length of q and energy.

Args:

• EBinEdges (list): Bin edges between which the cuts are performed.

Kwargs:

• qMinBin (float): Minimal size of binning along q (default 0.01). Points will be binned if they are
closer than qMinBin.

• dataFiles (list): List of dataFiles to cut (default None). If none, the ones in the object will be used.

Returns:

3.3. Data Module 41

MJOLNIR Documentation, Release 1.0

• Data list (n * 4 arrays): n instances of [Intensity, monitor count, normalization and normalization
counts].

• qbins (n arrays): n arrays holding the bin edges along the lenght of q

cutQE(q1, q2, width, minPixel, EnergyBins, rlu=True, extend=True, dataFiles=None)
Wrapper for cut data into maps of q and intensity between two q points and given energies. This is
performed by doing consecutive constant energy planes.

Args:

• q1 (3D or 2D array): Start position of cut in format (h,k,l) or (qx,qy) depending on rlu flag.

• q2 (3D or 2D array): End position of cut in format (h,k,l) or (qx,qy) depending on rlu flag.

• width (float): Full width of cut in q-plane.

• minPixel (float): Minimal size of binning aling the cutting direction. Points will be binned if they are
closer than minPixel.

• EnergyBins (list): Bin edges between which the 1D constant energy cuts are performed.

Kwargs:

• rlu (bool): If True, coordinates given are interpreted as (h,k,l) otherwise as (qx,qy)

• extend (bool): If True, cut is extended to edge of measured area instead of only between provided
points.

• dataFiles (list): List of dataFiles to cut (default None). If none, the ones in the object will be used.

Returns:

• Data list (n * 4 arrays): n instances of [Intensity, monitor count, normalization and normalization
counts].

• Bin list (n * 3 arrays): n instances of bin edge positions in plane of size (m+1,3), orthogonal positions
of bin edges in plane of size (2,2), and energy edges of size (2).

• center position (n * 3D arrays): n instances of center positions for the bins.

• binDistance (n arrays): n isntances of arrays holding the distance in q to q1.

cutQELine(QPoints, EnergyBins, width=0.1, minPixel=0.01, rlu=True, dataFiles=None)
Method to perform Q-energy cuts from a variable number of points. The function takes both qx/qy or hkl
positions. In the case of using only two Q points, the method is equivalent to cutQE.

Args:

• QPoints (list of points): Q positions between which cuts are performed. Can be specified with both
qx, qy or hkl positions dependent on the choice of format.

• EnergyBins (list of floats): Energy bins for which the cuts are performed

Kwargs:

• width (float): Width of the cut in 1/A (default 0.1).

• minPixel (float): Minial size of binning along the cutting directions. Points will be binned if they
arecloser than minPixel (default=0.01)

• rlu (bool): If True, provided QPoints are interpreted as (h,k,l) otherwise as (qx,qy), (default True).

• dataFiles (list): List of dataFiles to cut. If none, the ones in the object will be used (default None).

42 Chapter 3. MJOLNIR Module

MJOLNIR Documentation, Release 1.0

Warning: The way the binning works is by extending the end points with 0.5*minPixel, but the
method sorts away points not between the two Q points given and thus the start and end bins are only
half filled. This might result in descripancies between a single cut and the same cut split into different
steps. Further, splitting lines into sub-cuts forces a new binning to be done and the bin positions can
then differ from the case where only one cut is performed.

Returns: m = Q points, n = energy bins

• Data list (m * n * 4 arrays): n instances of [Intensity, monitor count, normalization and normalization
counts].

• Bin list (m * n * 3 arrays): n instances of bin edge positions in plane of size (m+1,3), orthogonal
positions of bin edges in plane of size (2,2), and energy edges of size (2).

• center position (m * n * 3D arrays): n instances of center positions for the bins.

• binDistance (m * n arrays): n isntances of arrays holding the distance in q to q1.

Note: If an HKL point outside of the scattering plane is given, the program will just take the projection
onto the scattering plane.

extractData(A4=None, A4Id=None, Ef=None, EfId=None, raw=False, A4Tolerence=0.1, EfToler-
ence=0.1)

Extract data given A4 value and Ef (or the corresponding indices).

Kwargs:

• A4 (float): Wanted A4 value in degrees (default None)

• A4Id (int): Id of wedge which is a number between 0 and 103 (default None)

• Ef (float): Wanted Ef value in meV (default None)

• EfId (int): Wanted Id of analyser energy, number between 0-7 (default None)

• raw (bool): If true method returns Intensity,Nornalization,Monitor, else returns Inten-
sity/(Norm*Monitor) (default False)

• A4Tolerence (float): Tolerence between found and wanted A4 value in degrees (default 0.1)

• EfTolerence (float): Tolerence between found and wanted Ef value in meV (default 0.1)

Note: If A4 or Ef is provided, then these will be used instead of A4Id or EfId.

plotA3A4(dataFiles=None, ax=None, planes=[], log=False, returnPatches=False, binningDeci-
mals=3, singleFigure=False, plotTessellation=False, Ei_err=0.05, temperature_err=0.2,
magneticField_err=0.2, electricField_err=0.2)

Plot data files together with pixels created around each point in A3-A4 space. Data is binned in the
specified planes through their A3 and A4 values. This can result in distordet binning when binning across
large energy regions. Data is plotted using the pixels calulated for average plane value, i.e. binning
7,8,9,10, and 11 patches for plane 9 are used for plotting.

Kwargs:

• dataFiles (DataFiles): single file or list of files to be binned together (Default self.convertedFiles)

• ax (matplotlib axis): Axis into which the planes are to be plotted (Default None, i.e. new)

• planes (list (of lists)): Planes to be plotted and binned (default [])

3.3. Data Module 43

MJOLNIR Documentation, Release 1.0

• log (bool): Whether or not to plot intensities as logarithm (default False)

• returnPatches (bool): If true the method returns the patches otherwise plotted in the given axis
(default False)

• binningDecimals (int): Number of decimal places Q positions are rounded before binning (default
3)

• singleFigure (bool): If true, all planes are plotted in same figure (default False)

• plotTessellation (bool): Plot Tessellation of points (default False)

• Ei_err (float): Tolerence of E_i for which the values are equal (default = 0.05)

• temperature_err (float): Tolerence of temperature for which the values are equal (default = 0.2)

• magneticField_err (float): Tolerence of magnetic field for which the values are equal (default =
0.2)

• electricField_err (float): Tolerence of electric field for which the values are equal (default = 0.2)

Returns:

• ax (matplotlib axis or list of): axis (list of) containing figures for plotted planes.

Raises:

• NotImplimentedError

Examples:

The following example will combine the two files and plot all of the available planes in different figures.

>>> DS = DataSet.DataSet(convertedFiles=[--.nxs,---.nxs])
>>> plt.figure()
>>> ax = plt.gca()
>>>
>>> DataSet.plotA3A4(DS.convertedFiles,ax=ax)

If only a subset of planes or different planes are to be combined the following will achieve this:

>>> DataSet.plotA3A4(DS.convertedFiles,ax=ax,planes=[0,1,2,3,[4,5,6],[8,9]])

Here planes 0 through 3 are plotted separately while 4,5, and 6 as well as 8 and 9 are binned.

Note: Binning planes from different analysers might result in nonsensible binnings.

plotCut1D(q1, q2, width, minPixel, Emin, Emax, rlu=True, ax=None, plotCoverage=False, ex-
tend=True, dataFiles=None, **kwargs)

Plotting wrapper for the cut1D method. Generates a 1D plot with bins at positions corresponding to the
distance from the start point. Adds the 3D position on the x axis with ticks.

Note:

Can only perform cuts for a constant energy plane of definable width.

Args:

• q1 (3D or 2D array): Start position of cut in format (h,k,l) or (qx,qy) depending on rlu flag.

• q2 (3D or 2D array): End position of cut in format (h,k,l) or (qx,qy) depending on rlu flag.

• width (float): Full width of cut in q-plane in 1/AA.

44 Chapter 3. MJOLNIR Module

MJOLNIR Documentation, Release 1.0

• minPixel (float): Minimal size of binning aling the cutting direction. Points will be binned if they are
closer than minPixel.

• Emin (float): Minimal energy to include in cut.

• Emax (float): Maximal energy to include in cut

Kwargs:

• rlu (bool): If True, coordinates given are interpreted as (h,k,l) otherwise as (qx,qy)

• ax (matplotlib axis): Figure axis into which the plots should be done (default None). If not provided,
a new figure will be generated.

• kwargs: All other keywords will be passed on to the ax.errorbar method.

• dataFiles (list): List of dataFiles to cut (default None). If none, the ones in the object will be used.

Returns:

• ax (matplotlib axis): Matplotlib axis into which the plot was put.

• Data list (4 arrays): Intensity, monitor count, normalization and normalization counts binned in the
1D cut.

• Bin list (3 arrays): Bin edge positions in plane of size (n+1,3), orthogonal positions of bin edges in
plane of size (2,2), and energy edges of size (2).

• binCenter (3D array): Array containing the position of the bin centers of size (n,3)

• binDistance (array): Distance from centre of bins to start position.

plotCutPowder(EBinEdges, qMinBin=0.01, ax=None, dataFiles=None, **kwargs)
Plotting wrapper for the cutPowder method. Generates a 2D plot of powder map with intensity as function
of the length of q and energy.

Note: Can only perform cuts for a constant energy plane of definable width.

Args:

• EBinEdges (list): Bin edges between which the cuts are performed.

Kwargs:

• qMinBin (float): Minimal size of binning along q (default 0.01). Points will be binned if they are
closer than qMinBin.

• ax (matplotlib axis): Figure axis into which the plots should be done (default None). If not provided,
a new figure will be generated.

• dataFiles (list): List of dataFiles to cut (default None). If none, the ones in the object will be used.

• kwargs: All other keywords will be passed on to the ax.pcolormesh method.

Returns:

• ax (matplotlib axis): Matplotlib axis into which the plot was put.

• Data list (4 arrays): Intensity, monitor count, normalization and normalization counts binned in the
1D cut.

• Bin list (3 arrays): Bin edge positions in plane of size (n+1,3), orthogonal positions of bin edges in
plane of size (2,2), and energy edges of size (2).

3.3. Data Module 45

MJOLNIR Documentation, Release 1.0

plotCutQE(q1, q2, width, minPixel, EnergyBins, rlu=True, ax=None, dataFiles=None, **kwargs)
Plotting wrapper for the cutQE method. Generates a 2D intensity map with the data cut by cutQE.

Note: Positions shown in tool tip reflect the closes bin center and are thus limited to the area where data
is present.

Args:

• q1 (3D or 2D array): Start position of cut in format (h,k,l) or (qx,qy) depending on rlu flag.

• q2 (3D or 2D array): End position of cut in format (h,k,l) or (qx,qy) depending on rlu flag.

• width (float): Full width of cut in q-plane.

• minPixel (float): Minimal size of binning aling the cutting direction. Points will be binned if they are
closer than minPixel.

• EnergyBins (list): Bin edges between which the 1D constant energy cuts are performed.

Kwargs:

• rlu (bool): If True, coordinates given are interpreted as (h,k,l) otherwise as (qx,qy)

• ax (matplotlib axis): Figure axis into which the plots should be done (default None). If not provided,
a new figure will be generated.

• dataFiles (list): List of dataFiles to cut (default None). If none, the ones in the object will be used.

• kwargs: All other keywords will be passed on to the ax.errorbar method.

Returns:

• ax (matplotlib axis): Matplotlib axis into which the plot was put.

• Data list (n * 4 arrays): n instances of [Intensity, monitor count, normalization and normalization
counts].

• Bin list (n * 3 arrays): n instances of bin edge positions in plane of size (m+1,3), orthogonal positions
of bin edges in plane of size (2,2), and energy edges of size (2).

• center position (n * 3D arrays): n instances of center positions for the bins.

• binDistance (n arrays): n isntances of arrays holding the distance in q to q1.

plotCutQELine(QPoints, EnergyBins, width=0.1, minPixel=0.01, rlu=True, ax=None,
dataFiles=None, **kwargs)

Plotting wrapper for the cutQELine method. Plots the scattering intensity as a function of Q and E for cuts
between specified Q-points.

Args:

• QPoints (list): List of Q points in either RLU (3D) or QxQy (2D).

• EnergyBins (list): List of bin edges in the energy direction.

Kwargs:

• width (float): Width in Q-direction for cuts (default 0.01)

• rlu (bool): If True, provided points are intepreted as (h,k,l) otherwise (qx,qy), (Deflault RLU)

• ax (matplotlib axis): Axis into wicht the data is plotted. If None a new will be created (default None).

• dataFiles (DataFile(s)): DataFile or list of, from which data is to be taken. If None all datafiles in self
is taken (default None).

46 Chapter 3. MJOLNIR Module

MJOLNIR Documentation, Release 1.0

• vmin (float): Lower limit for colorbar (default min(Intensity)).

• vmax (float): Upper limit for colorbar (default max(Intensity)).

• tickRound (int): Number of decimals ticks are rounded to (default 3).

• ticks (int): Number of ticks in plot, minimum equal to number of Q points (default 10).

• plotSeperator (bool): If true, vertical lines are plotted at Q points (default True).

• seperatorWidth (float): Width of sperator line (default 2).

• log (bool): If true the plotted intensity is the logarithm of the intensity (default False)

Return: m = Q points, n = energy bins

• ax: matplotlib axis in which the data is plotted

• Data list (m * n * 4 arrays): n instances of [Intensity, monitor count, normalization and normalization
counts].

• Bin list (m * n * 3 arrays): n instances of bin edge positions in plane of size (m+1,3), orthogonal
positions of bin edges in plane of size (2,2), and energy edges of size (2).

• center position (m * n * 3D arrays): n instances of center positions for the bins.

• binDistance (m * n arrays): n isntances of arrays holding the distance in q to q1.

Note: The ax.set_clim function is created to change the color scale. It takes inputs vmin,vmax.

plotQPlane(EMin, EMax, binning=’xy’, xBinTolerance=0.05, yBinTolerance=0.05, enlargen=False,
log=False, ax=None, RLUPlot=True, dataFiles=None, **kwargs)

Wrapper for plotting tool to show binned intensities in the Q plane between provided energies.

Args:

• EMin (float): Lower energy limit.

• EMax (float): Upper energy limit.

Kwargs:

• binning (str): Binning scheme, either ‘xy’ or ‘polar’ (default ‘xy’).

• xBinTolerance (float): bin sizes along x direction (default 0.05). If enlargen is true, this is the mini-
mum bin size.

• yBinTolerance (float): bin sizes along y direction (default 0.05). If enlargen is true, this is the mini-
mum bin size.

• enlargen (bool): If the bin sizes should be adaptive (default False). If set true, bin tolereces are used
as minimum bin sizes.

• log (bool): Plot intensities as the logarithm (defautl False).

• ax (matplotlib axes): Axes in which the data is plotted (default None). If None, the function creates a
new axes object.

• RLUPlot (bool): If true and axis is None, a new reciprocal lattice axis is created and used for plotting
(default True).

• other: Other key word arguments are passed to the pcolormesh plotting algorithm.

Returns:

• ax (matplotlib axes)

3.3. Data Module 47

MJOLNIR Documentation, Release 1.0

Note: The axes object has a new method denoted ‘set_clim’ taking two parameters (VMin and VMax)
used to change axes coloring.

Module Functions

The following is a list of the available functions in the DataSet module. Some of them have wrappers in the DataSet-
object methods.

DataSet.OxfordList(list)
Create a comma seperated string from the strings provided with last comma trailed by ‘and’.

DataSet.binData3D(dx, dy, dz, pos, data, norm=None, mon=None, bins=None)
3D binning of data.

Args:

• dx (float): Step size in x (required).

• dy (float): Step size in x (required).

• dz (float): Step size in x (required).

• pos (2D array): Position of data points as flattened lists (X,Y,Z) (required).

• data (array): Flattened data array (required).

Kwargs:

• norm (array): Flattened normalization array.

• mon (array): Flattened monitor array.

• bins (list of arrays): Bins locating edges in the x, y, and z directions.

returns:

Rebinned intensity (and if provided Normalization, Monitor, and Normalization Count) and X, Y,
and Z bins in 3 3D arrays.

Example:

>>> pos = [Qx,Qy,E]
>>> Data,bins = DataSet.binData3D(0.05,0.05,0.2,pos,I,norm=Norm,mon=Monitor)

DataSet.boundaryQ(file, plane, A4Extend=0.0, A3Extend=0.0)
Calculate the boundary of a given scan in Q space A4Extend: in degrees A3Extend: in degrees

DataSet.calculateGrid3D(X, Y, Z)

Generate 3D grid with centers given by X,Y, and Z. Args:

X (3D array): 3D array of x values generated by np.meshgrid.

Y (3D array): 3D array of y values generated by np.meshgrid.

Z (3D array): 3D array of z values generated by np.meshgrid.

Example:

48 Chapter 3. MJOLNIR Module

MJOLNIR Documentation, Release 1.0

>>> x = np.linspace(-1.5,1.5,20)
>>> y = np.linspace(0,1.5,10)
>>> z = np.linspace(-1.0,5.5,66)
>>> X,Y,Z = np.meshgrid(x,y,z,indexing='ij')
>>> XX,YY,ZZ = calculateGrid3D(X,Y,Z)

Now XX is a 21x11x67 array containing all x coordinates of the edges exactly midway bewteen the points.
Same goes for YY and ZZ with y and z coordinates respectively.

DataSet.convertToQxQy(sample, QPoints)
Convert a given list og QPoints to QxQy from UB matrix of sample

Args:

• sample (MJOLNIR.DataFile.Sample): Sample from which the UB matrix is to be used

• QPoints (list): List of HKL poinst to be converted

Returns:

• Q (list): List of QxQy points in same shape as provided

DataSet.convexHullPoints(A3, A4)
Calculate the convex hull of rectangularly spaced A3 and A4 values

DataSet.createQEAxes(Dataset, axis=0, figure=None)
Function to create Q E plot

Kwargs:

• axis (int): Whether to create axis 0 or 1 (projection vector 0 or orthogonal to this, default 0)

• figure

DataSet.createRLUAxes(Dataset, figure=None)
Create a reciprocal lattice plot for a given DataSet object.

Args:

• Dataset (DataSet): DataSet object for which the RLU plot is to be made.

Returns:

• ax (Matplotlib axes): Axes containing the RLU plot.

DataSet.cut1D(positions, I, Norm, Monitor, q1, q2, width, minPixel, Emin, Emax, plotCoverage=False,
extend=True)

Perform 1D cut through constant energy plane from q1 to q2 returning binned intensity, monitor, normalization
and normcount. The full width of the line is width while height is given by Emin and Emax. the minimum step
sizes is given by minPixel.

Note: Can only perform cuts for a constant energy plane of definable width.

Args:

• positions (3 arrays): position in Qx, Qy, and E in flattend arrays.

• I (array): Flatten intensity array

• Norm (array): Flatten normalization array

• Monitor (array): Flatten monitor array

• q1 (2D array): Start position of cut in format (qx,qy).

3.3. Data Module 49

MJOLNIR Documentation, Release 1.0

• q2 (2D array): End position of cut in format (qx,qy).

• width (float): Full width of cut in q-plane.

• minPixel (float): Minimal size of binning along the cutting direction. Points will be binned if they are
closer than minPixel.

• Emin (float): Minimal energy to include in cut.

• Emax (float): Maximal energy to include in cut

Kwargs:

• plotCoverage (bool): If True, generates plot of all points in the cutting plane and adds bounding box of cut
(default False).

• extend (bool): Whether or not the cut from q1 to q2 is to be extended throughout the data (default true)

Returns:

• Data list (4 arrays): Intensity, monitor count, normalization and normalization counts binned in the 1D cut.

• Bin list (3 arrays): Bin edge positions in plane of size (n+1,3), orthogonal positions of bin edges in plane
of size (2,2), and energy edges of size (2).

DataSet.cut1DE(positions, I, Norm, Monitor, E1, E2, q, width, minPixel)
Perform 1D cut through constant Q point returning binned intensity, monitor, normalization and normcount.
The width of the cut is given by the width attribute.

Note: Can only perform cuts for a constant energy plane of definable width.

Args:

• positions (3 arrays): position in Qx, Qy, and E in flattend arrays.

• I (array): Flatten intensity array

• Norm (array): Flatten normalization array

• Monitor (array): Flatten monitor array

• E1 (float): Start energy.

• E2 (float): End energy.

• q (2d vector): Q point in (qx,qy)

• width (float): Full width of cut in q-plane.

• minPixel (float): Minimal size of binning aling the cutting direction. Points will be binned if they are
closer than minPixel.

• Emin (float): Minimal energy to include in cut.

• Emax (float): Maximal energy to include in cut

Returns:

• Data list (4 arrays): Intensity, monitor count, normalization and normalization counts binned in the 1D cut.

• Bin list (1 array): Bin edge positions in energy

DataSet.cutPowder(positions, I, Norm, Monitor, EBinEdges, qMinBin=0.01)
Cut data powder map with intensity as function of the length of q and energy.

Args:

50 Chapter 3. MJOLNIR Module

MJOLNIR Documentation, Release 1.0

• positions (3 arrays): position in Qx, Qy, and E in flattend arrays.

• I (array): Flatten intensity array

• Norm (array): Flatten normalization array

• Monitor (array): Flatten monitor array

• EBinEdges (list): Bin edges between which the cuts are performed.

Kwargs:

• qMinBin (float): Minimal size of binning along q (default 0.01). Points will be binned if they are closer
than qMinBin.

Returns:

• Data list (n * 4 arrays): n instances of [Intensity, monitor count, normalization and normalization counts].

• qbins (n arrays): n arrays holding the bin edges along the lenght of q

DataSet.cutQE(positions, I, Norm, Monitor, q1, q2, width, minPix, EnergyBins, extend=True)
Cut data into maps of q and intensity between two q points and given energies. This is performed by doing
consecutive constant energy planes.

Args:

• positions (3 arrays): position in Qx, Qy, and E in flattend arrays.

• I (array): Flatten intensity array

• Norm (array): Flatten normalization array

• Monitor (array): Flatten monitor array

• q1 (2D array): Start position of cut in format (qx,qy).

• q2 (2D array): End position of cut in format (qx,qy).

• width (float): Full width of cut in q-plane.

• minPixel (float): Minimal size of binning aling the cutting direction. Points will be binned if they are
closer than minPixel.

• EnergyBins (list): Bin edges between which the 1D constant energy cuts are performed.

Kwargs:

• extend (bool): Whether or not the cut from q1 to q2 is to be extended throughout the data (default true)

Returns:

• Data list (n * 4 arrays): n instances of [Intensity, monitor count, normalization and normalization counts].

• Bin list (n * 3 arrays): n instances of bin edge positions in plane of size (m+1,3), orthogonal positions of
bin edges in plane of size (2,2), and energy edges of size (2).

• center position (n * 3D arrays): n instances of center positions for the bins.

• binDistance (n arrays): n isntances of arrays holding the distance in q to q1.

DataSet.load(filename)
Function to load an object from a pickled file.

Note: It is not possible to unpickle an object created in python 3 in python 2 or vice versa.

3.3. Data Module 51

MJOLNIR Documentation, Release 1.0

DataSet.plotA3A4(files, ax=None, planes=[], binningDecimals=3, log=False, returnPatches=False, sin-
gleFigure=False, plotTessellation=False, Ei_err=0.05, temperature_err=0.2, mag-
neticField_err=0.2, electricField_err=0.2)

Plot data files together with pixels created around each point in A3-A4 space. Data is binned in the specified
planes through their A3 and A4 values. This can result in distordet binning when binning across large energy
regions. Data is plotted using the pixels calulated for average plane value, i.e. binning 7,8,9,10, and 11 patches
for plane 9 are used for plotting.

Args:

• files (DataFiles): single file or list of files to be binned together

Kwargs:

• ax (matplotlib axis): Axis into which the planes are to be plotted (Default None, i.e. new)

• planes (list (of lists)): Planes to be plotted and binned (default [])

• binningDecimals (int): Number of decimal places A3-A4 positions are rounded before binning (default 3)

• log (bool): Whether or not to plot intensities as logarithm (default False)

• returnPatches (bool): If true the method returns the patches otherwise plotted in the given axis (default
False)

• singleFigure (bool): If true, all planes are plotted in same figure (default False)

• plotTessellation (bool): Plot Tessellation of points (default False)

• Ei_err (float): Tolerence of E_i for which the values are equal (default = 0.05)

• temperature_err (float): Tolerence of temperature for which the values are equal (default = 0.2)

• magneticField_err (float): Tolerence of magnetic field for which the values are equal (default = 0.2)

• electricField_err (float): Tolerence of electric field for which the values are equal (default = 0.2)

Returns:

• ax (matplotlib axis or list of): axis (list of) containing figures for plotted planes.

Raises:

• AttributeError

Examples:

The following example will combine the two files and plot all of the available planes in different figures.

>>> DS = DataSet.DataSet(convertedFiles=[--.nxs,---.nxs])
>>> plt.figure()
>>> ax = plt.gca()
>>>
>>> DataSet.plotA3A4(DS.convertedFiles,ax=ax)

If only a subset of planes or different planes are to be combined the following will achieve this:

>>> DataSet.plotA3A4(DS.convertedFiles,ax=ax,planes=[0,1,2,3,[4,5,6],[8,9]])

Here planes 0 through 3 are plotted separately while 4,5, and 6 as well as 8 and 9 are binned.

Note: Binning planes from different analysers might result in nonsensible binnings.

52 Chapter 3. MJOLNIR Module

MJOLNIR Documentation, Release 1.0

DataSet.plotCut1D(positions, I, Norm, Monitor, q1, q2, width, minPixel, Emin, Emax, rlu=True,
ax=None, plotCoverage=False, extend=True, **kwargs)

Plotting wrapper for the cut1D method. Generates a 1D plot with bins at positions corresponding to the distance
from the start point. Adds the 3D position on the x axis with ticks.

Note: Can only perform cuts for a constant energy plane of definable width.

Args:

• positions (3 arrays): position in Qx, Qy, and E in flattend arrays.

• I (array): Flatten intensity array

• Norm (array): Flatten normalization array

• Monitor (array): Flatten monitor array

• q1 (2D vector): Starting position in (qx,qy)

• q2 (2D vector): Ending position in (qx,qy)

• width (float): Width of binning orthogonal to cut direction

• minPixel (float): Width of binning along cut direction

• Emin (float): Minimal energy of cut

• Emax (float): Maximal energy of cut

Kwargs:

• rlu (bool): If True, extract points are plotted in RLU # TODO: Make this work

• ax (matplotlib axis): Figure axis into which the plots should be done (default None). If not provided, a
new figure will be generated.

• kwargs: All other keywords will be passed on to the ax.errorbar method.

Returns:

• ax (matplotlib axis): Matplotlib axis into which the plot was put.

• Data list (4 arrays): Intensity, monitor count, normalization and normalization counts binned in the 1D cut.

• Bin list (3 arrays): Bin edge positions in plane of size (n+1,3), orthogonal positions of bin edges in plane
of size (2,2), and energy edges of size (2).

• binCenter (3D array): Array containing the position of the bin centers of size (n,3)

• binDistance (array): Distance from centre of bins to start position.

DataSet.plotCutPowder(positions, I, Norm, Monitor, EBinEdges, qMinBin=0.01, ax=None, **kwargs)
Plotting wrapper for the cutPowder method. Generates a 2D plot of powder map with intensity as function of
the length of q and energy.

Note: Can only perform cuts for a constant energy plane of definable width.

Args:

• positions (3 arrays): position in Qx, Qy, and E in flattend arrays.

• I (array): Flatten intensity array

• Norm (array): Flatten normalization array

3.3. Data Module 53

MJOLNIR Documentation, Release 1.0

• Monitor (array): Flatten monitor array

• EBinEdges (list): Bin edges between which the cuts are performed.

Kwargs:

• qMinBin (float): Minimal size of binning along q (default 0.01). Points will be binned if they are closer
than qMinBin.

• ax (matplotlib axis): Figure axis into which the plots should be done (default None). If not provided, a
new figure will be generated.

• kwargs: All other keywords will be passed on to the ax.pcolormesh method.

Returns:

• ax (matplotlib axis): Matplotlib axis into which the plot was put.

• Data list (4 arrays): Intensity, monitor count, normalization and normalization counts binned in the 1D cut.

• Bin list (3 arrays): Bin edge positions in plane of size (n+1,3), orthogonal positions of bin edges in plane
of size (2,2), and energy edges of size (2).

DataSet.plotCutQE(positions, I, Norm, Monitor, q1, q2, width, minPix, EnergyBins, rlu=True, ax=None,
**kwargs)

Plotting wrapper for the cutQE method. Generates a 2D intensity map with the data cut by cutQE.

Note: Positions shown in tool tip reflect the closes bin center and are thus limited to the area where data is
present.

Args:

• positions (3 arrays): position in Qx, Qy, and E in flattend arrays.

• I (array): Flatten intensity array

• Norm (array): Flatten normalization array

• Monitor (array): Flatten monitor array

• q1 (2D array): Start position of cut in format (qx,qy).

• q2 (2D array): End position of cut in format (qx,qy).

• width (float): Full width of cut in q-plane.

• minPixel (float): Minimal size of binning aling the cutting direction. Points will be binned if they are
closer than minPixel.

• EnergyBins (list): Bin edges between which the 1D constant energy cuts are performed.

Kwargs:

• ax (matplotlib axis): Figure axis into which the plots should be done (default None). If not provided, a
new figure will be generated.

• rlu (bool): If True, data is plotted in RLU. # TODO: Make this work!

• kwargs: All other keywords will be passed on to the ax.errorbar method.

Returns:

• ax (matplotlib axis): Matplotlib axis into which the plot was put.

• Data list (n * 4 arrays): n instances of [Intensity, monitor count, normalization and normalization counts].

54 Chapter 3. MJOLNIR Module

MJOLNIR Documentation, Release 1.0

• Bin list (n * 3 arrays): n instances of bin edge positions in plane of size (m+1,3), orthogonal positions of
bin edges in plane of size (2,2), and energy edges of size (2).

• center position (n * 3D arrays): n instances of center positions for the bins.

• binDistance (n arrays): n isntances of arrays holding the distance in q to q1.

DataSet.plotQPlane(I, Monitor, Norm, pos, EMin, EMax, binning=’xy’, xBinTolerance=0.05, yBinTol-
erance=0.05, enlargen=False, log=False, ax=None, **kwargs)

Plotting tool to show binned intensities in the Q plane between provided energies.

Args:

• I (array): Intensity of data.

• Monitor (array): Monitor of data.

• Norm (array): Nornmalization of data.

• pos (3 array): Position of data in qx, qy, and energy.

• EMin (float): Lower energy limit.

• EMax (float): Upper energy limit.

Kwargs:

• binning (str): Binning scheme, either ‘xy’ or ‘polar’ (default ‘xy’).

• xBinTolerance (float): bin sizes along x direction (default 0.05). If enlargen is true, this is the minimum
bin size.

• yBinTolerance (float): bin sizes along y direction (default 0.05). If enlargen is true, this is the minimum
bin size.

• enlargen (bool): If the bin sizes should be adaptive (default False). If set true, bin tolereces are used as
minimum bin sizes.

• log (bool): Plot intensities as the logarithm (defautl False).

• ax (matplotlib axes): Axes in which the data is plotted (default None). If None, the function creates a new
axes object.

• other: Other key word arguments are passed to the pcolormesh plotting algorithm.

Returns:

• ax (matplotlib axes)

Note: The axes object gets a new method denoted ‘set_clim’ taking two parameters (VMin and VMax) used to
change axes coloring.

DataSet.voronoiTessellation(points, plot=False, Boundary=False, numGroups=False)
Generate individual pixels around the given datapoints.

Args:

• points (list of list of points): Data points to generate pixels in shape [files,XY,N] i.e. [1,2,N] for one file
with N points

Kwargs:

• plot (bool): If True, method plots pixels created with green as edge bins and red as internal (default False)

• Boundary (list of Polygons): List of Shapely polygons constituting the boundaries (Default False)

3.3. Data Module 55

MJOLNIR Documentation, Release 1.0

DataFile Object and Methods

class DataFile.DataFile(fileLocation)
Object to load and keep track of HdF files and their conversions

calculateEdgePolygons(addEdge=True)
Method to calculate bounding polygon for all energies. The energies are split using the bin-edges method
of DataSet. Hereafter, the outer most points are found in polar coordinates and a possible addition is made
creating the padded bounding polygon.

Kwargs:

• addEdge (bool/float): If true, padding is found as difference between outer and next outer point. If
addEdge is a number, generate padding a padding of this value (default True)

Returns:

• edgePolygon (list): List of shapely polygons of the boundary

• EBins (list): Binning edges in energy

difference(other, keys={’Ei’, ’I’, ’_A3’, ’_A4’, ’binning’, ’instrument’, ’sample’, ’scanParame-
ters’})

Return the difference between two data files by keys

loadBinning(binning)
Small function to check if current binning is equal to wanted binning and if not reloads to binning wanted

plotA4(binning=None)
Method to plot the fitted A4 values of the normalization table

Kwargs:

• binning (int): Binning for the corresponding normalization table (default self.binning or 8)

returns:

• fig (matplotlib figure): Figure into which the A4 values are plotted

plotEf(binning=None)
Method to plot the fitted Ef values of the normalization table

Kwargs:

• binning (int): Binning for the corresponding normalization table (default self.binning or 8)

returns:

• fig (matplotlib figure): Figure into which the Ef values are plotted

plotEfOverview(binning=None)
Method to plot the fitted Ef values of the normalization table

Kwargs:

• binning (int): Binning for the corresponding normalization table (default self.binning or 8)

returns:

• fig (matplotlib figure): Figure into which the Ef values are plotted

plotNormalization(binning=None)
Method to plot the fitted integrated intensities of the normalization table

Kwargs:

• binning (int): Binning for the corresponding normalization table (default self.binning or 8)

56 Chapter 3. MJOLNIR Module

MJOLNIR Documentation, Release 1.0

returns:

• fig (matplotlib figure): Figure into which the Ef values are plotted

saveNXsqom(saveFileName)
Save converted file into an NXsqom.

Args:

• saveFileName (string): File name to be saved into.

3.3.2 Graphical User Interfaces

Below follows an overveiw of the developed graphical interfaces to be used in the data treatment.

3.3.3 Viewer3D

Quick visualization tool designed to deal with the difficulties of handling 3D data. Through simple keybord inputs one
can look through the data along the principal axis.

class Viewer3D.Viewer3D(Data, bins, axis=2, log=False, ax=None, grid=False, **kwargs)
3 dimensional viewing object generating interactive Matplotlib figure. Keeps track of all the different plotting
functions and variables in order to allow the user to change between different slicing modes and to scroll through
the data in an interactive way.

Args:

• Data (3D array): Intensity array in three dimensions. Assumed to have Qx, Qy, and E along the first,
second, and third directions respectively.

• bins (List of 1D arrays): Coordinates of the three directions as returned by the BinData3D functionality of
DataSet.

Kwargs:

• axis (int): Axis along which the interactive plot slices the data (default 2).

• log (bool): If true, the log 10 of the intensity is plotted (default False)

• ax (matplotlib axis): Matplotlib axis into which one pltos data (Default None)

Example:

>>> from MJOLNIR.Data import DataSet,Viewer3D
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>>
>>> DataFile = ['../TestData/cameasim2018n000011.nxs']
>>> Data,bins = dataset.binData3D(0.08,0.08,0.25)
>>>
>>> Intensity = np.divide(Data[0]*Data[3],Data[1]*Data[2])
>>>
>>> Viewer = Viewer3D.Viewer3D(Intensity,bins,axis=2)
>>> Viewer.ax.set_title(str(title)[2:-1])
>>> plt.show()

Interactive plot generated by above function call with a Intensity being 3D rebinned data using the simple
phonon component, Ei of 10 meV and 180 steps of 1 degree in A3, A4 at -60 degrees.

3.3. Data Module 57

MJOLNIR Documentation, Release 1.0

3.3.4 Viewer1D

Visualization tool for 1D extractions of data. This tool is inteded to be used during the experiment but especially in
the initial phase where optimal settings for goniometers, A3, crystal parameters, e.t.c. are to be found.

class Viewer1D.Viewer1D(XData, YData, YErr, fitFunction=<MJOLNIR.Statistics.FittingFunction.Gaussian
object>, xLabel=”, dataLabel=”, xID=0, plotAll=False, **kwargs)

Interactive visualization of 1D data with fitting capabilities. Currently only inteded for 1 scan file.

Args:

• XData (list): List of x-valies in shape (m,n) for m data series and n scan points.

• YData (list): List of y-values in shape (m,n) for m data series and n scan points.

• YErr (list): List of y errors in same shape as YData.

Kwargs:

• fitFunction (FittingFunction): Custumized object to perform fitting (default Gaussian).

• xLabel (list): X label text in shape (m) for m scan parameters (default ‘’, nothing plotted).

• dataLabel (list): Label to be shown in legend in shape (m) or (m,l), m and l free (default ‘’, nothing plotted)

• xID (int): Index of x axis to be used (default 0)

• yID (int): Index of y axis to be plotted first (default 0)

• plotAll (bool): Boolean deciding whether or not to plot all data (default False)

Raises:

• AttributeError

Example: # TODO: REDO!!

>>> from MJOLNIR.Data import DataSet,Viewer1D
>>> file = 'TestData/ManuallyChangedData/A3.h5'
>>> ds = DataSet.DataSet(dataFiles = file)
>>> ds.convertDataFile(binning=1)
>>> data = ds.extractData(A4Id=30)
>>>
>>> Y = data[:,:5] # Only first 5 energies
>>> Y_err = np.sqrt(Y) # Calculate errors
>>> X = np.arange(Y.shape[0])
>>>
>>> xlabel = ['Arbitrary [arb]']

(continues on next page)

58 Chapter 3. MJOLNIR Module

MJOLNIR Documentation, Release 1.0

(continued from previous page)

>>> dataLabel = np.array(['Detector 0: pos 0', 'Detector 0: pos 1', 'Detector 0:
→˓pos 2','Detector 0: pos 3', 'Detector 0: pos 4'])
>>>
>>> # Initialize the viewer
>>> Viewer = Viewer1D.Viewer1D(XData=X,YData=Y, >>> YErr=Y_err,
→˓xLabel=xlabel,dataLabel = dataLabel,plotAll=True)

For a walkthrough of the interface see Raw plotting and fitting.

initData()
Update with new indices both X and Y (+Yerr)

plotData()
Plot current data. First destroy previous plot if possible

plotFit()
Plot current guess or fit

removeFitPlot()
Try to remove previous fitPlot if it exists

3.4 Tools functions

Below is a list of the general tools developed for the MJOLNIR software package.

KwargChecker Function to check if given key-word is in the list of ac-
cepted Kwargs.

my_timer_N Timer function to measure time consumbtion of func-
tion.

binEdges Generate binning of values array with minimum bin size
of tolerance.

_tools.KwargChecker(function=None, include=None)
Function to check if given key-word is in the list of accepted Kwargs. If not directly therein, checks capitaliza-
tion. If still not match raises error with suggestion of closest argument.

Args:

• func (function): Function to be decorated.

Raises:

• AttributeError

_tools.beautifyArgs(args=(), kwargs={})
Beautify arguments and keyword arguments. Returns formated string with arguments and keyword argumenets
seperated with commas as called in a function

_tools.binEdges(values, tolerance)
Generate binning of values array with minimum bin size of tolerance. Binning starts at values[0]-tolerance/2.0
and ends at values[-1]+tolerance/2.0.

Args:

• values (array): 1D array to be binned.

• tolerance (float): Minimum length of bin sizes.

3.4. Tools functions 59

MJOLNIR Documentation, Release 1.0

Returns:

• bins (array)

_tools.fileListGenerator(numberString, folder, year, format=’{:}camea{:d}n{:06d}.hdf’)
Function to generate list of data files.

Args:

• numberString (str): List if numbers seperated with comma and dashes for sequences.

• folder (str): Folder of wanted data files.

• year (int): Year if wanted data files

Kwargs:

• format (str): format of data files (default ‘{:}camea{:d}n{:06d}.hdf’)

returns:

• list of strings: List containing the full file string for each number provided.

Example:

>>> numberString = '201-205,207-208,210,212'
>>> files = fileListGenerator(numberString,'data/',2018)
['data/camea2018n000201.hdf', 'data/camea2018n000202.hdf',
'data/camea2018n000203.hdf', 'data/camea2018n000204.hdf',
'data/camea2018n000205.hdf', 'data/camea2018n000207.hdf',
'data/camea2018n000208.hdf', 'data/camea2018n000210.hdf',
'data/camea2018n000212.hdf']

_tools.my_timer_N(N=0)
Timer function to measure time consumbtion of function.

Kwargs:

• N (int): Number of itterations to perform.

Raises:

• AttributeError

60 Chapter 3. MJOLNIR Module

CHAPTER 4

In depth description of core functionalities

Below is a list of links to the documentation for individual core functionalities. These are not code dependent and
should be understandable from a physics/mathmatics perspective.

4.1 Geometry

Warning:

Assumptions made by the program:

• Incoming beam is along (0, 1, 0), i.e. the y-axis

• Sample is located at (0, 0, 0)

• Only first order scattering

• Energies and A4 is calculated independently of the rotation of the analyser, i.e. infinite mosaicity is
assumed

• Analysers are flat, tangental, and without focusing in the tangental plane.

• Detectors are horizontal

• All analysers in a wedge are made from the same material.

The calculation of energies and the corresponding scattering angles is automatically calculated when the initialization
method is called on the Instrument object. That is, one first of all needs to create the wanted instrument with all of
the detectors, analysers and wedges as described in the instrument creation tutorial Build a simple instrument. Having
done all this, the procedure for the calculations is as follows.

Looping through all wedges, the concept attribute is checked. This tells whether one has a one to one correspondence
between the detectors and the analysers or a many to many. The prior is true for secondary spectrometers as FlatCone
or MultiFLEXX, where each detector optimally receives neutrons from only one analyser. The latter is, however only
in the sense of many to one, true for the CAMEA concept applied at SINQ. Here one detector receives neutrons from

61

MJOLNIR Documentation, Release 1.0

multiple analysers. The need for this distinction in the code is for the algorithm to know, if it should split the detector
pixels up in bunches or not. These bunches are controlled by the attributes for the Detector object. In both cases, the
relative position vector is found for each pixel and the corresponding analyser as well as the vector from origo to the
analyser. As described below, the actual optimal scattering position is then calculated and returned to the instrument
object. Having both the detector position as well as the scattering position at the analyser, it is straight forward to
calculate scattering angle 𝐴4 and corresponding final energy 𝐸𝑓 .

Visualization of scattering planes used for the calculation of scattering angle and final energy.

The math behind finding the optimal scattering position for a given pixel at the analyser is as follows. Noticing that the
neutron cannot have a change in its momentum perpendicular to the scattering plane, one can make a 2D drawing of
the trajectory of the neutron from the sample to the detector as in the left of figure InstrumentFig. Here it is important
to note that the dashed line signifies a bend of the trajectory as depicted in the 3D subfigure in the inset to the right.
The discrepancy between the two is that in the latter a projection from 3D to 2D is used; the neutron is scattered out
of the plane. Accepting the 2D depiction, one can notice, that the two triangles Sample-AnalyserCenter-DeltaXA and
Sample-DetectorCenter-DeltaXD have the same angles. Thus

∆𝑋𝐷

𝐿𝐴 + 𝐿𝐷
=

∆𝑋𝐴

𝐿𝐴
⇒ ∆𝑋𝐴 =

∆𝑋𝐷

𝐿𝐷

𝐿𝐴
+ 1

.

This calculation is slightly more complex if one does not assume that both the analyser and the detector are tangental
to the sample-detector vector. One then needs to find the distance away from the scattering direction, the pixel is
moved. Before, this was just given by the pixel position relative to its centre, ∆𝑋𝐷, but is now given as a dot product
between the relative position and the vector perpendicular to the scattering direction:

∆𝑋𝐷 =
(︁
𝑃pos − 𝑃det,centre

)︁
· 𝐿⃗⊥,

where 𝑃pos is the pixel position, 𝑃det,centre is the center position of the pixel and 𝐿⃗𝑝𝑒𝑟𝑝 is the vector perpendicular
to the scattering direction and is in the horizontal plane. With this correction, the above formula for position on the
analyser still holds true, and one can thus find the scattering position. By simply using the cosine relation, where the
angle 𝜃vec{a}‘ and 𝑏⃗ is given by

cos(𝜃) =
𝑎⃗ · 𝑏⃗
|⃗𝑎| |⃗𝑏|

,

one can find the angle between the incoming beam and the scattering direction, denoted 𝐴4. Further, the final energy
𝐸𝑓 is found in a similar sense, where the angle between sample-analyser and analyser-detector is found and converted

62 Chapter 4. In depth description of core functionalities

MJOLNIR Documentation, Release 1.0

into an energy by the usual elastic scattering formula

𝜆 = 2𝑑 sin(𝜃) and 𝐸 =

(︃
9.0445678A

√
meV

𝜆

)︃2

.

Here the algorithm uses the d-value specified for the first analyser in the wedge. This could of course be generalized to
allow for different analyser materials, but is not yet done as this would complicate the code further and is not believed
to be relevant.

4.2 Energy normalization procedure

The following is a walk-through of the energy normalization method as performed by the MJOLNIR Data module
when given a data file containing scattering data from scanning incoming energy, 𝐸𝑖, with a Vanadium sample.

The raw data file is opened and the intensities of all pixels and all detectors are extracted. Further, the number of
pixels, detectors and wedges are found.

4.2.1 Determination of active area

In order to determine the active area of each detector, and indeed of each detecetor segment looking at a given analyzer,
the intensity data as function of pixel, detector, and energy is collapsed along the energy direction. This results in
graphs like in figure EnergySummed below. From this, it is clear that not all pixels are active and that the splitting into
software pixels depend on the detector/analyser combination.

Fig. 1: Intensity of detector tube 29 when summing across energies for Vanadium sample.

By fitting a suitable amount of Gaussians to all of the peaks, one obtains the intensity center for each energy on the
detectors and from this, one can determine the active area, as seen in figure GaussFitWedge. The procedure to find the
peaks and fit the Gaussian functions is to first find the maximal intensity, estimate the width from prior knowledge of
the setup, fit the Guassian and then subtract the fit. This is then repeated for the necessary number of times needed.
This method does, however, depend on the signal being described by a Gaussian to an extend that the data with the
fit subtracted has a small remainder. If the difference is too big, the algorithm cannot find all the peaks and an error
is raised. Currently the active area is defined as pixels within the center ±3𝜎. This makes it possible to use around
99.74% of the intensity. However, making this area too broad allows pixels with very low statistics to be used in
experiments introducing a high uncertainty on the measured intensity.

4.2. Energy normalization procedure 63

MJOLNIR Documentation, Release 1.0

Fig. 2: Fit of all peaks for wedge 4 allowing determination of center and width.

Fig. 3: Intensity of detector tube 29 with active area shown in red.

64 Chapter 4. In depth description of core functionalities

MJOLNIR Documentation, Release 1.0

For the current width used for active area, the red points in the above figure ActiveArea is used.

4.2.2 Software pixel binning

With the knowledge of the positions and widths of the active areas on the detectors, one needs to define the pixel
edges for all of the software pixels. The number of pixels in each software pixel depends on both the width of the
active area on the detector and the number of software pixels into which the user wants to bin. Usually, the number of
software pixels is between 1 and 8, where a case of 8 pixels is shown in figure SoftwarePixels below. Then, using the
raw intensity the signal is binned into software pixels as function of energy. These are then individually fitted with a
Gaussian as to precisely determine the center energy, normalization, width, and possible background.

Fit of one, three, and eight software pixels to Vanadium normalization for the 29th detector tube.

It merely remains to save the obtained normalization into a file, which is done in the CSV format. For each detector,
analyser, and software pixel the following parameters are saved:

Normalization for 8 pixel(s) using data TestData/VanNormalization.h5
Performed 2018-04-05 13:22:29.008053
Detector,Energy,Pixel,Amplitude,Center,Width,Background,lowerBin,upperBin
0,0,0,553.307499792,3.11194470068,0.0351916686546,-1.14865525492,25,30
0,0,1,3534.65749131,3.13586570375,0.0234845709327,2.79927766486,30,35
0,0,2,6707.93446507,3.17045382964,0.0296278355214,-2.44445514979,35,40
0,0,3,8449.34235339,3.19740050283,0.0279281924646,0.147005539459,40,44
0,0,4,7762.45025046,3.22095475304,0.029643268258,-3.43488524431,44,48
0,0,5,5700.97166402,3.25044106789,0.0305651479509,-0.633300325994,48,53
0,0,6,2117.92181626,3.28390443811,0.0270144206303,1.62528891194,53,58
0,0,7,269.377490747,3.31657107929,0.0341873820177,-0.0625227707394,58,63
...

The CSV file is saved and is used when converting experiment data from raw HDF files into NXqom files explained
in the Data file conversion documentation. For a table of the found energies, see 291018

4.3 Data file conversion

In general, it is expected that a CAMEA-like instrument is to be run during experiments in 2 different scan modes:

• 𝐴3 scans

• External parameter

However, in the initial phase of setup other scans might be conducted. The data conversion thus does not require a
specific scan but allows for all types. This does then require the user to choose corresponding visualizations corre-
spondingly.

4.3. Data file conversion 65

MJOLNIR Documentation, Release 1.0

4.3.1 HdF file format

The raw data from the instrument is expected to be provided in an HdF 5 format with the following structure:

cameasim2018n0000xx.h5
entry

CAMEA
calib1

a4offset
amplitude
background
boundaries
final_energy
width

calib3
a4offset
amplitude
background
boundaries
final_energy
width

calib8
a4offset
amplitude
background
boundaries
final_energy
width

detector
counts
summed_counts

monochromator
d_spacing
energy
gm
gm_zero
horizontal_curvature
horizontal_curvature_zero
rotation_angle
rotation_angle_zero
summed_counts
tlm
tlm_zero
tum
tum_zero
type
vertical_curvature
vertical_curvature_zero

monochromator_slit
bottom
bottom_zero
left
left_zero
right
right_zero
top
top_zero
x_gab

(continues on next page)

66 Chapter 4. In depth description of core functionalities

MJOLNIR Documentation, Release 1.0

(continued from previous page)

y_gab
comment
control

absolute_time
data
mode
preset
time

data
counts
summed_counts
(Scan parameter)

end_time
experimental_identifier
instrument
local_contact

name
proposal_id
proposal_title
proposal_user

name
proton_beam

data
sample

azimuthal_angle
name
orientation_matrix
plane_normal
plane_vector_1
plane_vector_2
polar_angle
polar_angle_zero
rotation_angle
rotation_angle_zero
sgl
sgl_zero
sgu
sgu_zero
(sample environment parameters)
unit_cell

scancommand
scanvars
start_time
title
user

address
affiliation
email
name

From this file, raw plotting and a conversion algorithm is possible. Raw plotting is further explained in Raw plotting
and fitting.

4.3. Data file conversion 67

MJOLNIR Documentation, Release 1.0

4.3.2 NXsqom file format

The format into which data is converted is the NXsqom format. It is a standard of the nexus files and is designed for
data converted into reciprocal space. With this choice of conversion it is believed that some pre-existing data handling
routines exist in other software solutions already.

Below is a HDF converted file in the NXsqom format for a 𝐴3 scan. Here 𝑁𝑃 is the number of scan points and 𝑁𝑁𝑃
is the number of unique pixels converted.

cameasim2018n0000xx.nxs
entry

CAMEA
calib1

a4offset
amplitude
background
boundaries
final_energy
width

calib3
a4offset
amplitude
background
boundaries
final_energy
width

calib8
a4offset
amplitude
background
boundaries
final_energy
width

detector
counts
summed_counts

monochromator
d_spacing
energy
gm
gm_zero
horizontal_curvature
horizontal_curvature_zero
rotation_angle
rotation_angle_zero
summed_counts
tlm
tlm_zero
tum
tum_zero
type
vertical_curvature
vertical_curvature_zero

monochromator_slit
bottom
bottom_zero
left
left_zero

(continues on next page)

68 Chapter 4. In depth description of core functionalities

http://download.nexusformat.org/sphinx/classes/applications/NXsqom.html

MJOLNIR Documentation, Release 1.0

(continued from previous page)

right
right_zero
top
top_zero
x_gab
y_gab

comment
control

absolute_time
data
mode
preset
time

data
counts
en
monitor
normalization
qx
qy
summed_counts
(Scan parameter)

end_time
experimental_identifier
instrument
local_contact

name
proposal_id
proposal_title
proposal_user

name
proton_beam

data
sample

azimuthal_angle
name
orientation_matrix
plane_normal
plane_vector_1
plane_vector_2
polar_angle
polar_angle_zero
rotation_angle
rotation_angle_zero
sgl
sgl_zero
sgu
sgu_zero
(sample environment parameters)
unit_cell

scancommand
scanvars
start_time
title
user

address
affiliation

(continues on next page)

4.3. Data file conversion 69

MJOLNIR Documentation, Release 1.0

(continued from previous page)

email
name

4.4 Voronoi tessellation and plotting functionality

With all of the effort but into building a instrument acquiring as much data and data points as possible, it is sensi-
ble to have a plotting algorithm that then shows all of these. This is exactly what the two methods plotA3A4 and
plotQPatches seek to do. However, performing calculations and plotting all of the measured points make the methods
computationally heavy and slow as well as presents challenges for the visualization. Below is a list of difficulties
encountered while building the two methods.

Difficulties:

• Handle (almost) duplicate point positions

• Generate suitable patch around all points

• Number of points to handle

The methods do address some of the above challenges in some way; the almost duplicate points are handled by
truncating the precision on the floating point values holding the position. That is, 𝑞⃗ = (0.1423, 2.1132) is by default
rounded to 𝑞⃗ = (0.142, 2.113) and binned with other points at the same position. This rounding is highly relevant
when generating patches in 𝐴3-𝐴4 coordinates as the discretization is intrinsic to the measurement scans performed.

What is of real interest is the generation of a suitable patch work around all of the points for which this page is
dedicated. The wanted method is to be agile and robust to be able to handle all of the different scenarios encountered.
For these requirements to be met, the voronoi tessellation has been chosen.

4.4.1 Voronoi tessellation

First of all, the voronoi diagram is defined as the splitting of a given space into regions, where all points in one region
is closer to one point than to any other point. That is, given an initial list of points, the voronoi algorithm splits of space
into just as many regions for which all points in a given region is closest to the initial point inside it than to any other.
This method is suitable in many different areas of data treatment, e.g. to divide a city map in to districts dependent on
which hospital is nearest, or divide ????. This method can however also be used in the specific task for creating pixels
around each measurement point in a neutron scattering dataset.

The method works in n-dimensional spaces, where hyper-volumes are created, and one can also change the distance
metric from the normal Euclidean 𝑑 =

√︀
∆𝑥2 + ∆𝑦2 + ∆𝑧2 · · · to other metrics, i.e. the so-called Manhattan distance

𝑑 = |∆𝑥| + |∆𝑦| + |∆𝑧| + · · ·. It has, however, been chosen that using multi-dimensional and non-Euclidean
tessellations obscures the visualization of the data rather than enhance it. Furthermore, the used SciPi-package spatial
does not natively support changes of metric and a rewriting is far outside of the scope of this software suite.

70 Chapter 4. In depth description of core functionalities

https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.spatial.Voronoi.html

MJOLNIR Documentation, Release 1.0

Left: 50 random points generated and plotted in 2D. Right: Voronoi diagram created for the 50 random points. Blue
points are initial positions, orange are intersections, full lines are edges (denoted ridges) connecting two intersections,
dashed lines go to infinity.

As seen above, for a random generated set of points, the voronoi tessellation is also going to produce a somewhat
random set of edges. This is of course different, if instead one had a structured set of points as in StructuredVoronoi
below. However, some of the edges still go to infinity creating infinitely large pixels for all of the outer measurements.
This is trivially un-physical and is to be dealt with by cutting or in another way limiting the outer pixels.

Voronoi generated for regular set of data points as for instance an 𝐴3 rotation scan with equidistant 𝐴4 points.

From the above, it is even more clear that the edge pixels extend to infinity. This is to be taken care of and two ways
comes into mind. First, one could define a boundary such that the pixel edges intersecting this boundary is cut in a
suitable manor. Second, one could add an extra set of data points around the actual measurement points in such a
way that all of the wanted pixels remain finite. Both of these methods sort of deals with the issue but ends up also
creating more; when cutting the boundary it still remains to figure out how and where the infinite lines intersect with
it and how to best cut; adding more points is in principle simple but how to choose these suitably in all case. In the
reality a combination of the two is what is used. That is, first extra points are added all around the measurement area,
generating a bigger voronoi diagram; secondly the outer pixels are cut by the boundary. Thus the requirement on the
position of the additional points is loosened as one is free to only add a small amount of extra points (specifically 8
extra points are added: above, below, left, right, and diagonally, with respect to the mean position).

4.4. Voronoi tessellation and plotting functionality 71

MJOLNIR Documentation, Release 1.0

4.5 Visualization methods

This section is dedicated to give both an overview of the available visualization methods and also an in depth explana-
tion of the workings of them.

4.5.1 Discussed visualization tools for ‘Live view’

As discussed in the technical report of F. Groitel and S. Tóth, the is following non-exhaustive list features and visual-
izations needed by the user during an experiment at the CAMEA instrument

• 1D line plots

– Intensity as function of ∆𝐸 - So-called Dimer plot

– Constant energy between two 𝑄-points

– Constant 𝑄-point against ∆𝐸

• 2D Colour plots

– Powder average, intensity against ∆𝐸 and |𝑄|

– Constant energy planes, intensity against 𝑄𝑥 and 𝑄𝑥 or scattering plane vectors for given energy width

– Intensity against detector index and unbinned pixel

– Intensity against detector index and ∆𝐸

– Intensity against energy and 𝑄-points, for a list of 𝑄-points plot the intensity as function of ∆𝐸 and 𝑄⃗

The last bullet under the 2D plots has been added since the last review of the document (medio February 2017).

Some of the above visualizations have already been met by the developed software, and will below be explained in
some detail as to elucidate the underlying algorithms and their limitations. Software specifications can be found in the
‘Data Module’_

For more details, see <DataSet>ShortAnchor_.

72 Chapter 4. In depth description of core functionalities

CHAPTER 5

Optimizations

This is a small set of notes explaining the methods used to optimize different parts of the software code. It is meant as
an overview of the changes and thoughts that have gone into the code structure and changes made.

5.1 Optimizing of the plotA3A4 rountine

In order to make the method plotA3A4 usefull in a practical mannor, it needs to be somewhat fast in its computation.
Otherwise, one will not use it and instead use binning, or even worse another program! And as it is already mentioned
in the documentation, the computation time for generating all pixels individually for the methods plotA3A4 and
plotQPatches is too long for practical use. Thus, an optimization of the underlying algorithm made sense to persue.
Before changing any code, the end test was set up: By first running the old method and then the new, two results are
generated and they are checked to be idential. Is so, and the with a speed-up, the goal is reached.

Thus, before headlessly trying to perform optimization, a test of the current speed is needed. The
following is a dump of times for the un-optimized function using four files and one plane with
8 subplanes (T0Phonon10meV.nxs, T0Phonon10meV90A4InterlaceA3.nxs, T0Phonon10meV93_5A4.nxs, and
T0Phonon10meV93_5A4InterlaceA3.nxs, planes 8 through 15):

73

MJOLNIR Documentation, Release 1.0

Function Time [s] Uncertainty [s]
testFiles 0.0003143 2.2458e-05
getA3A4 2.8371810e-05 1.0929e-05
getData 0.0561441 0.0118
concatINormMon 0.0405629 0.0068
A4Instr 0.0001758 2.9835-05
genPointsAndBoundary 0.2238357 0.0151
voronoiTessellation 14.070171 1.6175
calcCentroids 0.4847603 0.0366
sortPoints 25.009635 0.7448
calculateQ 3.4248633 0.0778
binPlanes 0.0295210 0.0007
genPatchesAndCollection 8.7695337 0.0920
plotter 0.1842771 0.0093

From this it is clear that three functions are to be looked at: voronoiTessellation, sortPoints, and genPatchesAndCol-
lection.

5.2 Voronoi Tessellation subroutine

Individual functions are timed by the using my_timing_N decorator. This allows for a partitioning of the program into
smaller pieces that are easier to be optimized individually. Also when chaning code in these sub-functions, the test
was of course that the output is identical to the old one. This method is not the optimal for speeding up the code as it
is most probable that chaning larger coding structures might allow for a quicker speedup.

Below is a table of the resulting computational times for the tests used showing a clear speed-up of around 1.7 for real
data.

Tests (5 runs) Original [s] Optimized [s] Gain
100000 random points between 0 and 1 10.27 ± 0.15 4.45 ± 0.08 2.310 ± 0.05
1000000 random points between 0 and 1 106.7 ± 0.8 47.75 ± 0.7 2.235 ± 0.04
4 Data files and 8 planes * 10.93 ± 0.08 6.3 ± 0.2 1.72 ± 0.06

*: setup from above.

The speed-up comes mainly from two changes; when generating the return data the intersections points of all of the
polygons where recalculated while only the polygons cut by the boundary needed to be calculated. Secondly, when
testing if all data points are within the boundary a list comprehension is changed into the vectorized contains function
from the shapely.vectorized sub-library.

5.3 Timing function

In order to quantify whether or not a speed-up has been achieved, one need to time the method in question. This
is moste easily done through the use of the package time from Python, where one simply requests the current time
in seconds befor and after the method has been running. Subtracting the two then gives an estimate of the time
consumption. The reason for the use of the word ‘estimate’ is that this is not the correct time used by the computer.
The true time is the actual CPU time or even better, the number of CPU cycles needed to run the method. The reason
the time module does not capture this is that if the program does not run as the only process and with a 100% usage of
the core then a descripancy between measured and acutal time consumption is created. However, these technicalities

74 Chapter 5. Optimizations

MJOLNIR Documentation, Release 1.0

are not taken into account when I have performed the profiling of the code as I in no case am able to perform a superb
optimization with a background in pure physics.

The dectorator used for profiling is given below:

1 def my_timer_N(N=3):
2 if N<0:
3 raise AttributeError('Number of runs need to be bigger or equal to 1 or equal

→˓to 0 for no timing, but {} given.'.format(N))
4 def my_timer(func):
5 import time
6 def newFunc(*args,**kwargs):
7 Time = []
8 if N ==0:
9 returnval = func(*args,**kwargs)

10 else:
11 for i in range(N):
12 startT = time.time()
13 returnval = func(*args,**kwargs)
14 stopT = time.time()
15 Time.append(stopT-startT)
16 if N>1:
17 print('Function "{}" took: {}s (±{}s)'.format(func.__name__,np.

→˓mean(Time),np.std(Time)/np.sqrt(N)))
18 else:
19 print('Function "{}" took: {}s'.format(func.__name__,Time[0]))
20 return returnval
21 return newFunc
22 return my_timer

With this definition of the decorator, using it to time a function is straight forward, i.e.

1 def untimedFunction(*args,**kwargs):
2 # some calculations
3 return True
4

5 @my_timer_N(N=5)
6 def timedFunction(*args,**kwargs):
7 # some calculations
8 return True

Thus, the above code allows for timing the function timedFunction called 5 times, producing the output: Function
“timedFunction” took: 1.1920928955078125e-06s (±1.3571023436315258e-06s), where the first time is the average
of the N=5 runs, and the parenthesis denotes the uncertainty on the mean, 𝑠𝑡𝑑(𝑋)/

√
𝑁 .

5.3. Timing function 75

MJOLNIR Documentation, Release 1.0

76 Chapter 5. Optimizations

CHAPTER 6

Commissioning

This part of the documentation is intented to contain a sort of commissioning log-book and will be updated (hopefully)
frequently with the newest information about the process. Nice to have tables and figures are linked below table of
centents.

6.1 29/10-18 - Start of hot commissioning

Note: No neutrons on the instrument due to the need of adjusting the motor controller for A4. The motor enertia is
too small as it has been calibrated for RITA2 and not CAMEA.

Monday 29th of October. Today, the following is planned:

• First neutrons on the instrument

• Initial check of old alignment of A1-A2

Possible difficulties to be discussed:

• Tuning of the bias voltage of the detectors can be difficult as there is non-linearities in measurements.

– On RITA2 this was countered by putting a mask in front of the 2D detector.

– The CAMEA back-end has a build-in mask due to the cross-talk shielding and the scattering of anal-
ysers into different parts of the detectors.

– It could be possible to assume that the design energies of the back-end are true making it possible to
figure out 𝐸𝑖 independent of the A4 angle.

– The energies expected is provided in table EfTable

77

MJOLNIR Documentation, Release 1.0

Anal-
yser

𝐴5
[deg]

𝐸𝑖 calculated
[meV]

𝐸𝑖 article
[meV]

𝐸𝑖 McStas
[meV]

𝐸𝑖 Measurement
[meV]

0 48.90 3.200 3.21 3.204 3.177270 ±
0.145755

1 47.21 3.374 3.38 3.379 3.358399 ±
0.159861

2 45.53 3.568 3.58 3.575 3.550246 ±
0.173190

3 43.84 3.787 3.80 3.794 3.763014 ±
0.188041

4 42.16 4.033 4.05 4.041 4.009775 ±
0.202941

5 40.47 4.313 4.33 4.320 4.287641 ±
0.227040

6 38.79 4.629 4.64 4.637 4.603493 ±
0.256536

7 37.10 4.993 5.01 5.000 4.960061 ±
0.289973

EfTable: Final energies are calculated from the angles defined in the McStas simulation and a
d-spacing of 3.355 Å for PG. The article numbers are taken from Groitl2016, while the Mc-
Stas numbers are found from the normalization procedure using 1 software pixel as described in
Software pixel binning

• Alignment of the A2 and A4 are not independen but need to be aligned together

6.1.1 Fitting routine for finding 𝐴2 and 𝐴4 offsets

As mentioned above, the determination of the offsets in 𝐴2 and 𝐴4 is coupled. That is, the offset in 𝐴2 results in an
offset in the incoming energy thus chaning the scattering angle 𝐴4. One way of determining these offsets is to consider
a sample with known lattice parameters. Further, it is assumed that the lattice parameter of the monochromator is
𝑑𝑝𝑔 = 3.355 Å. The ‘out-going’ wave from the monochromator must be equal to the ‘in-coming’ wave of the sample
(assuming first order scattering), meaning that according to Braggs law

𝜆𝑝𝑔 = 2𝑑𝑝𝑔 sin
𝐴2 + 𝛿𝐴2

2
, 𝜆𝑆 = 2𝑑𝑆 sin

𝐴4 + 𝛿𝐴4

2
.

𝜆𝑝𝑔 = 𝜆𝑆 ⇒ 2𝑑𝑝𝑔 sin
𝐴2 + 𝛿𝐴2

2
= 2𝑑𝑆 sin

𝐴4 + 𝛿𝐴4

2
.

One is then left with one equation with two unknowns, but if two reflections in the crystal are known, one can solve
the set of equations. However, this relies on the determination of 𝐴2 and 𝐴4 to be without any uncertainty. Often,
multiple scattering vectors are possible for a given sample and one can thus over-determine the offsets. This is then
formulated as:

2𝑑𝑝𝑔 sin
𝐴2𝑖 + 𝛿𝐴2

2
= 2𝑑𝑆,𝑖 sin

𝐴4𝑖 + 𝛿𝐴4

2
,

where 𝐴2𝑖 denotes angle corresponding to incoming energy 𝑖 and 𝑑𝑆,𝑖 and 𝐴4𝑖 are the 𝑖 ‘th lattice spacing and
corresponding scattering angle. Allowing 𝐴2 to be dependent on 𝑖 allows for changes in incoming energies which
might allow for more reflections inside of the limits of the secondary spectrometer. Formally the fitting is performed
by minimizing the difference between the calcualted wavelengths of the monochromator and sample reflections using
least 𝜒2 . The uncertainties are then defined for the individual wavelengths as

𝜎𝜆𝑖
=
√︁

4 sin2(𝜃𝑖)𝜎2
𝑑𝑖

+ 4𝑑2𝑖 cos2(𝜃𝑖)𝜎2
𝜃𝑖
,

78 Chapter 6. Commissioning

ReviewofScientificInstruments,Groitl,Fetal.;CAMEA-Anovelmultiplexinganalyzerforneutronspectroscopy;2016

MJOLNIR Documentation, Release 1.0

where 𝜃𝑖 is either 𝐴2𝑖 or 𝐴4𝑖 . With the assumption of known d-spacing, the uncertainty 𝜎𝑑 can in princible be set to
0. When the optimal values of the two offsets have been found on could define the uncertainties of these as the change
in offset resulting in an increase of the 𝜒2 value of one.

Example of offset fitting

A possible sample to be used for such a fitting procedure is AlO in powder form. This ensures that the
value of sample rotation, 𝐴3, is unimportant. This material has scattering planes with spacings given by 𝑑 ∈
{3.3993, 2.0371, 2.4915, 2.1145} Å, which for an incoming energy of 5 meV gives scattering angles, 𝐴4 , of 73.0,
166.2, 108.5, and 146.1 degrees. As to mimic a real measurement a random offset (but equal for all of the reflections)
is added together with a Gaussian noise 0.05 degrees on both 𝐴2 and 𝐴4 . The used values are tabulated in dataTable
below.

𝑑 [Å] 𝐸𝑖 [mev] 𝐴2 true [deg] 𝐴2 ‘measured’ [deg] 𝐴4 true [deg] 𝐴4 ‘measured’ [deg]
3.3993 5.0 74.1426 69.5344 73.0186 69.9029
2.0371 5.0 74.1426 69.4865 166.2374 163.2118
2.4915 5.0 74.1426 69.5796 108.5306 105.4428
2.1145 5.0 74.1426 69.5630 146.0592 142.9605

Running the minimization results in an A2 offset of -4.620 ± 0.004 degrees and an A4 offset of -3.14 ± 0.03 degrees.
These are somewhat consistent with the simulated offsets of -4.608 and -3.067 for A2 and A4 respectively. It is seen
that the found values are 3.2 and 2.3 sigmas away suggesting an underestimation of the uncertainties of the offsets.

6.2 30/10-18 - Opening of shutter and background

Things done today:

• Opening of shutter

– The neutron guide is not suitably under vacuum and needs to be fixed by turning on pump(s).

– After restart of pumps and security checks the main shutter and secondary shutter are allowed to be
opened.

– Test of shutter closing when triggered by alarm (beam stop button, malfunctioning external safety
system).

• Check of software

– Streaming of data through the UDP pipline as well as direct logging tested to be functional.

– Connections between Six and motors, monitors confirmed.

– Slight reajustment of data path way from detector to histogram memory is needed as data becomes
skewed.

• Measurements

– Background measurement of full tank for 83 minutes with a total of around 2500 counts or 0.3
count/(minut tube).

The secondary spectrometer in the direct beam to test that it can go through the space between sample table and guide.

6.2. 30/10-18 - Opening of shutter and background 79

MJOLNIR Documentation, Release 1.0

6.3 31/10-18 - Data wrangling and measurement

• During the night a background scan was measrued with between 0.25 and 0.3 counts/minut in each tube. The
distribution is homogenious execpt for at the ends of the tubes. Here it is believed that high voltage malfuncitons
add signal.

• The data transfer from the detector through streaming and histogram memory works but the format of the
detector matrix in the data files is change from being (np,104,1024) –> (np,1024,104)

• Visit by Henrik:

Fig. 1: Visit of Henrik and the mandatory photo session. CAMEA has gotten a name tag as well.

• The first neutrons have been measured!

Fig. 2: First neutrons as observed in the RITA cabin

• No dispersions have yet been measured as those in lead are at too high A4.

80 Chapter 6. Commissioning

MJOLNIR Documentation, Release 1.0

6.4 01/11-18 - First Vanadium normalization scan

First scan has been conducted of a Vanadium sample with variable 𝐸𝑖 as shown in figure VanScan with scan file name
camea2018n000038.hdf

Fig. 3: Summed overview of neutron counts for scan of 𝐸𝑖 from 3.0 meV to 5.5 meV in 501 steps (∆𝐸𝑖 = −0.005).

Fig. 4: SIMULATION: Summed overview of neutron counts for scan of 𝐸𝑖 from 3.0 meV to 5.5 meV in 401 steps
(∆𝐸𝑖 = −0.00625).

Assuming that the primary instrument is somewhat well-aligned the above data set is used for the normaization and
determination of 𝐸𝑓 .

Further studies have been conducted in the persuit for reducing the background below pixel 100 in all tubes. Following
has been found:

• Background is present for all energies.

• Background seems to be independent of A4 (or slightly)

• Background is dependent on neutron count through slits. (Dependts higly on slit openings)

• Background is gone when A1 is wrong, instrument shutter is in, or slits are closed

• Background increases with plastic or Vanadium as sample but is also present without sample

• Background remains despite shielding mat being in front of Be filter (see MatPicture)

One of the current explanations is that air scattering moves neutrons from sample area to material under the tank
generating gammas. These then enter the tank and are eiter wrongly interpreted at detector resutling in increased
background at pixel 100. Or, they are weak enough to be absorbed by cross talk schielding thus only allowing gammas
to reach detectors at pixel 100.

6.4. 01/11-18 - First Vanadium normalization scan 81

MJOLNIR Documentation, Release 1.0

Fig. 5: Detector overview with shielding mat just in front of the middle part of Be filter. As seen, the background
remains while neutrons are completely blocked.

6.5 02/11-18 - Background hunting

After many attempts to shield different parts of the instrument with borated plastic and boral it was found that the
neutrons can actually go through a tiny ‘slit’ between the Be filter and the cross talk shielding. This gab only exists in
the front as the shielding after the last analyser bank has a boral plate to cover the direct line.

Fig. 6: Overview of background measurements with the scan title and number

6.6 05/11-18 - Energy normalization

With the energy scan using a curved monochromator and Vanadium, data file ‘camea2018n000038.hdf’, the following
three energy diagrams is found. It is noticable that due to the excess background around pixel 80 across all tubes,

82 Chapter 6. Commissioning

MJOLNIR Documentation, Release 1.0

and the crude method of masking these when finding energies, the lowest energy of the 3.2 meV analyser bank for 8
software pixel does not converge. This then results in rather arbitrary values found. The values of 1 pixel binning can
be found in the table in 291018 .

For the FWHM values, below the energy widths for 1 and 3 pixelation is shown.

6.6. 05/11-18 - Energy normalization 83

MJOLNIR Documentation, Release 1.0

6.6.1 Pixel area and fit

Below are the active areas of detector tubes 39, 40, 45, 46, 50, and 51. These tubes are the four outer most in wedge 4
as well as the middle in the upper and lower layers.

6.6.2 Pixel binning 1, 3, and 8

Using all of the pixel binnings for detector tubes 39, 45, and 51 results in the following positions

84 Chapter 6. Commissioning

MJOLNIR Documentation, Release 1.0

6.7 06/11-18 - Determination of A4 + Be filter cooling

Whilst the Be filter has been cooling, the 2𝜃 data has been analysed. It is specifically files 87 and 88 containing 2𝜃
scans for AlO ay 5 meV. The files contains a scan on each side of the direct beam. As 5 tubes are measured on both
sides, these for the basis for determining the proper sample 2𝜃 . This follows from the fact that the scattering angle is
to be negated when moving to the other side of the direct beam while the offset is the same. In an equation, if the AlO
peak is found at 𝐶1 = 2𝜃𝑆 + 𝜃𝑜𝑓𝑓 and the other at 𝐶2 = −2𝜃𝑆 + 𝜃𝑜𝑓𝑓 then the actual scattering angle is 2𝜃 = 𝐶1−𝐶2

2
. For the given data, the value was found to be 71.1082 ± 0.0008 degrees. By subtracting this from all of the other fits,
the graph below is found. As seen, there is a general offset for all wedges of 3.52 ± 0.03 degrees between the found
and the calibration table. Further, the 2𝜃 step size between the tubes is also different than the calibration files. This is
due to the out of plane scattering as described in Geometry.

From the found sample scattering angle, assuming that the lattice paramters are known, the true incoming energy
can be found through the regular Bragg scattering condition with the powder ring peak being (0,2,1) of AlO. This
is found to be 𝐸𝑖 = 4.993192 meV, which compared to the one written in the data file as 4.999995 meV is quite
close. However, when using the HFO sample kindly provided by Romain Franck, the calculated 𝐸𝑖 = 3.1886 meV as

6.7. 06/11-18 - Determination of A4 + Be filter cooling 85

MJOLNIR Documentation, Release 1.0

compared to the 𝐸𝑖 = 3.199995 meV wanted. This corresponds to an offset in 𝐴1 of about 0.12 degrees. This is to be
investigated.

6.8 09/11-18 - First magnon in YMnO3

By performing 2 A3 scans with 0.5 step size and 121 points, counting roughly 3 minuts/point and 2𝜃 of -20 and -40
degrees, the scans shown below are found. In total, 12 hours have been used for this scan.

86 Chapter 6. Commissioning

MJOLNIR Documentation, Release 1.0

6.9 10/11-18 - Currat Axe Spurion in YMnO3

The previous scans has shown that the background is really good and low. However, there is a spurious signal which
moves in Q-E space. It is seen in all of the constant energy plots as a sharp dot and moves towards the (1,0,0) magnetic
Bragg peak when going down in energy transfer, c.f. below. Currently it is believed that the signal originates from the
strong Bragg peak that is transmitted through the filter (tough increased in strength) and somehow gets scattered in the
analysers.

6.10 12/11-18 - No beam

It is difficult to measure without neutrons. . . .

6.11 13/11-18 - No beam

It is difficult to measure without neutrons. . . .

6.9. 10/11-18 - Currat Axe Spurion in YMnO3 87

MJOLNIR Documentation, Release 1.0

6.12 14/11-18 - No beam

It is difficult to measure without neutrons. . . .

6.13 15/11-18 - No beam

It is difficult to measure without neutrons. . . .

6.14 16/11-18 - Diffuse scattering

88 Chapter 6. Commissioning

MJOLNIR Documentation, Release 1.0

6.15 17/11-18 - Magnon in YMnO3

With the combination of incoming energies 𝐸𝑖 and angles 𝐴4 the following data has been taken. As seen, the two spin
waves emerge and overlap as expected. The following settings has been measured:

• 161: A4: 84.000 deg, A3: -20.000 - 20.000 deg, Ei 6.800 meV

• 162: A4: 80.000 deg, A3: -20.000 - 20.000 deg, Ei 6.800 meV

• 163: A4: 84.000 deg, A3: -10.000 - 30.000 deg, Ei 8.500 meV

• 164: A4: 80.000 deg, A3: -10.000 - 30.000 deg, Ei 8.500 meV

• 165: A4: 76.000 deg, A3: -0.000 - -0.000 deg, Ei 10.200 meV

• 166: A4: 76.000 deg, A3: -0.000 - 40.000 deg, Ei 10.200 meV

• 167: A4: 80.000 deg, A3: -0.000 - 40.000 deg, Ei 10.200 meV

• 168: A4: 76.000 deg, A3: 7.000 - 47.000 deg, Ei 11.900 meV

• 169: A4: 80.000 deg, A3: 7.000 - 47.000 deg, Ei 11.900 meV

Note: The dispersion is measured on the + + scattering side to check resolution.

6.15. 17/11-18 - Magnon in YMnO3 89

MJOLNIR Documentation, Release 1.0

6.16 18/11-18 - Spinwaves in PbTi

In data files 178 through 190 measurements of PbTi is saved showing nice spin waves.

6.17 19/11-18 - Spinwaves in PbTi

Continuation of measurments of the nice spin waves. The following spin waves have been measured (summation of
all H-values as the compound is independent of this value).

6.18 20/11-18 - Vacuum problems at SINQ

Today we have had problems with the beam. . .

90 Chapter 6. Commissioning

MJOLNIR Documentation, Release 1.0

6.18. 20/11-18 - Vacuum problems at SINQ 91

MJOLNIR Documentation, Release 1.0

92 Chapter 6. Commissioning

MJOLNIR Documentation, Release 1.0

6.19 21/11-18 - Measurement of CuSeO3

With the small sample and weak signal, the excitations of CuSeO3 is very difficult to measure. This has to be viewed
in the light of the sample also being measured at Thales with 6 min/point. There, the signal was also found to be weak.

6.20 21/11-18 - Measurement of CuSeO3 II

Continuation of measurements.

6.21 23/11-18 - Startup of Ni3TeO6

Today the measurement of Ni3TeO6 has started. The experiment is done to make a direct comparison with the data
measured at MultiFLEXX at HZB with the same exact sample.

6.22 24/11-18 - Measurment of Ni3TeO6 II

Continuation of measurements.

6.23 25/11-18 - Measurment of Ni3TeO6 III

Continuation of measurements.

6.24 26/11-18 - Measurment of YMnO3 Startup

Start of YMnO3 measurements.

6.25 27/11-18 - Measurment of YMnO3 II

Continuation of YMnO3 measurements.

6.26 28/11-18 - Measurment of YMnO3 III

Continuation of YMnO3 measurements.

6.27 29/11-18 - Measurment of YMnO3 IV

Continuation of YMnO3 measurements.

6.19. 21/11-18 - Measurement of CuSeO3 93

MJOLNIR Documentation, Release 1.0

6.28 30/11-18 - Measurment of YMnO3 V

Continuation of YMnO3 measurements.

6.29 01/12-18 - Measurment of YMnO3 VI

Continuation of YMnO3 measurements.

6.30 02/12-18 - Startup of Ming Purple

Startup of Ming Purple measurements.

6.31 03/12-18 - Ming Purple II

Continuation of Ming Purple measurements.

6.32 04/12-18 - Magnet force test and Startup of LSCO

Today, the MA15 was mounted at the sample table to test forces excerted by the magnet on the monochromator and
magnet on the secondary spectrometer. No malfunction of anything during ramping up til 12 T and forces are towards
the monochromator and of same strengths as earlier with the RITA2 tank. Conclusion: Tank is not a problem in
magnetic field.

Startup of LCSO 5% doped sample. Measurements at 𝐸𝑖 5 meV elastic. Signal is very weak but this was expected
from measurements on Thales.

6.33 05/12-18 - LSCO II

Continuation of elastic measurements on LSCO. Changed 𝐸𝑖 to 4.05 meV incoming to move Bragg peak to higher 𝐴4
values to avoid the excess background from the direct beam hitting the side of the tank opening. Further, a Boral plate
was mounted.

94 Chapter 6. Commissioning

MJOLNIR Documentation, Release 1.0

6.34 06/12-18 - Christmas and Ming Purple

Christmas is upon us and this also shows, even in SINQ. The beautiful christmas hat has been masterfully created by
Ana and will forever be her legacy at PSI. Startup of Ming Purple measurements.

6.35 07/12-18 - Christmas and Ming Purple

Continuation of measurements on Ming Purple. Due to low statistics, more measurement time is granted.

6.34. 06/12-18 - Christmas and Ming Purple 95

MJOLNIR Documentation, Release 1.0

6.36 08/12-18 - Christmas and Ming Purple

Continuation of measurements on Ming Purple.

6.37 09/12-18 - Startup of ???

To be found out.

6.38 10/12-18 - Beam Down

6.39 11/12-18 - Beam Down

6.40 12/12-18 - Beam Down

6.41 13/12-18 - Beam development

6.42 14/12-18 - Startup of K2Ni2

6.43 15/12-18 - K2Ni2 II

Continuation of K2Ni2

6.44 16/12-18 - K2Ni2 III

Continuation of K2Ni2

6.45 17/12-18 - Start of SCBO

Startup of SCBO.

6.46 18/12-18 - SCBO II

Continuation of SCBO

6.47 19/12-18 - Start of MnF2

Startup of MnF2.

96 Chapter 6. Commissioning

MJOLNIR Documentation, Release 1.0

6.48 20/12-18 - MNF2 II

Continuation of MNF2 measurement.

6.49 21/12-18 - MNF2 III and Beam Shutdown

End of MNF2 measurement and beam shutdown at 06:00.

Important links:

• Overview of calculation and McStas simulations of final energy averaged over all detectors (291018)

Other links:

6.50 Shielding Issues

During the course of commissioning instrument specific spurions have been found.

6.48. 20/12-18 - MNF2 II 97

MJOLNIR Documentation, Release 1.0

6.51 Electronic logbook of scans files

Following is a raw overview of scan files with: name, scan command and title

• camea2018n000001.hdf: sc a3 67.67 da3 0 np 1 ti 300 UNKNOWN

• camea2018n000002.hdf: sc a3 67.67 da3 0 np 1 ti 30 UNKNOWN

• camea2018n000003.hdf: sc a3 67.67 da3 0 np 1 ti 30 UNKNOWN

• camea2018n000004.hdf Scan stopped before first point

• camea2018n000005.hdf: sc a3 28.3 da3 0 np 1 ti 30 UNKNOWN

• camea2018n000006.hdf: sc a3 28.3 da3 0 np 1 ti 30 UNKNOWN

• camea2018n000007.hdf: sc a3 28.3 da3 0 np 1 ti 30 UNKNOWN

• camea2018n000008.hdf: sc a3 28.3 da3 0 np 1 ti 30 UNKNOWN

• camea2018n000009.hdf: sc a3 28.3 da3 0 np 1 ti 30 UNKNOWN

• camea2018n000010.hdf: sc a3 28.3 da3 0 np 1 ti 30 UNKNOWN

• camea2018n000011.hdf Scan stopped before first point

• camea2018n000012.hdf: sc a3 25.7 da3 0 np 1 ti 30 UNKNOWN

• camea2018n000013.hdf: sc a3 0 da3 0 np 3 ti 10 UNKNOWN

• camea2018n000014.hdf Scan stopped before first point

• camea2018n000015.hdf: sc a3 0 da3 0 np 3 ti 10 UNKNOWN

• camea2018n000016.hdf Scan stopped before first point

• camea2018n000017.hdf: sc a3 0 da3 0 np 3 ti 10 UNKNOWN

• camea2018n000018.hdf Scan stopped before first point

• camea2018n000019.hdf: sc a3 0 da3 0 np 3 ti 10 UNKNOWN

98 Chapter 6. Commissioning

MJOLNIR Documentation, Release 1.0

• camea2018n000020.hdf Scan stopped before first point

• camea2018n000021.hdf: sc a3 0 da3 0 np 3 ti 10 UNKNOWN

• camea2018n000022.hdf Scan stopped before first point

• camea2018n000023.hdf: sc a3 0 da3 0 np 3 ti 10 UNKNOWN

• camea2018n000024.hdf Scan stopped before first point

• camea2018n000025.hdf: sc a3 0 da3 0 np 3 ti 10 UNKNOWN

• camea2018n000026.hdf Scan stopped before first point

• camea2018n000027.hdf: sc a3 0 da3 0 np 3 ti 10 UNKNOWN

• camea2018n000028.hdf Scan stopped before first point

• camea2018n000029.hdf: sc a3 0 da3 0 np 3 ti 10 UNKNOWN

• camea2018n000030.hdf Scan stopped before first point

• camea2018n000031.hdf: sc a3 0 da3 0 np 3 ti 10 UNKNOWN

• camea2018n000032.hdf Scan stopped before first point

• camea2018n000033.hdf Scan stopped before first point

• camea2018n000034.hdf Scan stopped before first point

• camea2018n000035.hdf Scan stopped before first point

• camea2018n000036.hdf: sc a3 25 da3 0.1 np 3 mn 1000 UNKNOWN

• camea2018n000037.hdf: sc ei 3.2 dei 0.05 np 3 mn 1000 UNKNOWN

• camea2018n000038.hdf: sc ei 4.25 dei -0.005 np 501 mn 100000 Vanadium normalization Be filter warm MCV
80

• camea2018n000039.hdf: sc a4 -52 da4 -0.5 np 5 mn 10000 Vanadium normalization Be filter warm MCV 80

• camea2018n000040.hdf: sc a4 -32.5 da4 0.2 np 226 mn 20000 a4 scan at 5 meV Al2O3 MV 80

• camea2018n000041.hdf: sc a4 -32 da4 0.2 np 221 mn 20000 a4 scan at 5 meV Al2O3 MV 80

• camea2018n000042.hdf: sc a3 25.1 da3 0 np 1 mn 10000 a4 scan at 5 meV Al2O3 MV 80

• camea2018n000043.hdf: sc gm 2 dgm 0.2 np 11 mn 10000 a4 scan at 5 meV Al2O3 MV 80

• camea2018n000044.hdf: sc gm 1.5 dgm 0.3 np 11 mn 10000 a4 scan at 5 meV Al2O3 MV 80

• camea2018n000045.hdf: sc a1 37.082 da1 0.1 np 11 mn 10000 a4 scan at 5 meV Al2O3 MV 80

• camea2018n000046.hdf: sc a1 37.082 da1 0.1 np 11 mn 10000 a4 scan at 5 meV Al2O3 MV 80

• camea2018n000047.hdf: sc a3 25.1 da3 0 np 1 mn 100000 Bor Matte vor Tankeingang

• camea2018n000048.hdf Scan stopped before first point

• camea2018n000049.hdf: sc a3 25.1 da3 0 np 1 ti 115 a1 off slit closed

• camea2018n000050.hdf: sc a3 25.1 da3 0 np 1 mn 100000 a1 correct slit closed

• camea2018n000051.hdf: sc a3 25.1 da3 0 np 1 mn 100000 a1 correct slit closed no sample

• camea2018n000052.hdf: sc a3 25.1 da3 0 np 1 mn 100000 a1 correct slit 5,5,5,5 no sample

• camea2018n000053.hdf: sc a3 25.1 da3 0 np 1 mn 100000 a1 correct slit 25,25,25,25 no sample

• camea2018n000054.hdf: sc a3 25.1 da3 0 np 1 ti 115 a1 off slit 25,25,25,25 no sample

6.51. Electronic logbook of scans files 99

MJOLNIR Documentation, Release 1.0

• camea2018n000055.hdf: sc a3 25.1 da3 0 np 1 mn 100000 ei= 6 meV slit 25,25,25,25 no sample

• camea2018n000056.hdf: sc a3 25.1 da3 0 np 1 mn 100000 ei= 7 meV slit 25,25,25,25 no sample

• camea2018n000057.hdf: sc a3 25.1 da3 0 np 1 mn 100000 ei= 3.2 meV slit 25,25,25,25 no sample

• camea2018n000058.hdf: sc a3 25.1 da3 0 np 1 mn 100000 ei=5meV slit all 25 no sample Left SD shielded

• camea2018n000059.hdf: sc a3 25.1 da3 0 np 1 mn 100000 ei=5meV slit all 25 no sample, no Al sample holder
Left SD shielded

• camea2018n000060.hdf: sc a3 25.1 da3 0 np 1 mn 100000 ei=5meV slit all 25 entrance shielded

• camea2018n000061.hdf: sc ei 4.25 dei -0.005 np 501 mn 100000 MV80 Plexi normalization

• camea2018n000062.hdf: sc a3 25.1 da3 0 np 1 mn 100000 gap shielded on top

• camea2018n000063.hdf: sc a3 25.1 da3 0 np 1 mn 100000 gap shielded on top and bottom of Be filter

• camea2018n000064.hdf: sc a3 25.1 da3 0 np 1 mn 100000 gap shielded on top and bottom of Be filter Bor after
slit

• camea2018n000065.hdf: sc a3 25.1 da3 0 np 1 mn 100000 gap shielded on top and bottom of Be filter Bor after
slit slits closed

• camea2018n000066.hdf: sc a3 25.1 da3 0 np 1 mn 100000 refernece slts all 25 no sample no shielding

• camea2018n000067.hdf: sc a3 25.1 da3 0 np 1 mn 100000 left SD shielded

• camea2018n000068.hdf: sc a3 25.1 da3 0 np 1 mn 100000 left and right SD shielded

• camea2018n000069.hdf: sc a3 25.1 da3 0 np 1 mn 100000 2 bor plates in front of left SD

• camea2018n000070.hdf: sc a3 25.1 da3 0 np 1 mn 100000 2 bor plates in front of left SD a4=-30

• camea2018n000071.hdf: sc a3 25.1 da3 0 np 1 mn 100000 no shielding a4=-30

• camea2018n000072.hdf: sc a3 25.1 da3 0 np 1 mn 100000 1 bor plates in front of left SD a4=-30

• camea2018n000073.hdf: sc a3 25.1 da3 0 np 1 mn 100000 2 boral plates in front of left SD a4=-30

• camea2018n000074.hdf: sc a3 25.1 da3 0 np 1 mn 100000 big boral plate in front of left SD a4=-30

• camea2018n000075.hdf: sc a3 25.1 da3 0 np 1 mn 100000 big boral plate in front of left SD a4=-30 entrance
shielded

• camea2018n000076.hdf: sc a3 25.1 da3 0 np 1 mn 100000 a4=90 entrance shielded

• camea2018n000077.hdf: sc a3 25.1 da3 0 np 1 mn 100000 a4=90 reference no shielding slits 25 Ei=5meV

• camea2018n000078.hdf: sc 2t 77.5 d2t -0.2 np 126 mn 20000 MV 80 Al2O3 positive 2t Ei=5meV

• camea2018n000079.hdf: sc 2t 77.5 d2t -0.2 np 126 mn 20000 MV 80 Al2O3 positive 2t Ei=4.62meV

• camea2018n000080.hdf: sc ei 4.25 dei 0.005 np 501 mn 100000 MV 80 Vanadium normalization scan 2t=70

• camea2018n000081.hdf Scan stopped before first point

• camea2018n000082.hdf: sc ei 3.25 dei -0.005 np 101 mn 100000 continuation of run 61

• camea2018n000083.hdf Scan stopped before first point

• camea2018n000084.hdf: sc ei 4.25 dei -0.01 np 251 mn 100000 Mono flat 80 V-TAS6

• camea2018n000085.hdf: sc ei 4.25 dei 0.01 np 251 mn 100000 Mono flat V-TAS6 a4=70

• camea2018n000086.hdf: sc 2t 77.5 d2t -0.05 np 501 mn 25000 Mono flat Al2O3 2t scan left side

• camea2018n000087.hdf: sc 2t 77.5 d2t -0.1 np 251 mn 50000 Mono flat Al2O3 2t scan left side

100 Chapter 6. Commissioning

MJOLNIR Documentation, Release 1.0

• camea2018n000088.hdf: sc 2t -32 d2t 0.1 np 441 mn 50000 Mono flat Al2O3 2t scan right side

• camea2018n000089.hdf: sc a3 25.1 da3 0 np 3 mn 5000 Mono flat Al2O3 2t scan right side

• camea2018n000090.hdf: sc a3 25.1 da3 0 np 3 mn 5000 Mono flat Al2O3 2t scan right side

• camea2018n000091.hdf: sc a3 25.1 da3 0 np 3 mn 5000 Mono flat Al2O3 2t scan right side

• camea2018n000092.hdf Scan stopped before first point

• camea2018n000093.hdf: sc a3 25.1 da3 0 np 3 mn 5000 Mono flat Al2O3 2t scan right side

• camea2018n000094.hdf: sc a3 25.1 da3 0 np 3 mn 5000 Mono flat Al2O3 2t scan right side

• camea2018n000095.hdf: sc a3 25.1 da3 0 np 3 mn 5000 Mono flat Al2O3 2t scan right side

• camea2018n000096.hdf: sc a3 25.1 da3 0 np 3 mn 5000 Mono flat Al2O3 2t scan right side

• camea2018n000097.hdf: sc a3 25.1 da3 0 np 3 mn 20000 Mono flat Al2O3 2t scan right side

• camea2018n000098.hdf: sc a3 25.1 da3 0 np 3 mn 20000 Mono flat Al2O3 2t scan right side

• camea2018n000099.hdf: sc a3 25.1 da3 0 np 200 mn 50000 Mono flat Al2O3 2t scan right side

• camea2018n000100.hdf: sc a3 30 da3 0.2 np 301 mn 100000 Mono flat Al2O3 2t scan right side

• camea2018n000101.hdf Scan stopped before first point

• camea2018n000102.hdf Scan stopped before first point

• camea2018n000103.hdf Scan stopped before first point

• camea2018n000104.hdf: sc a3 60 da3 0 np 200 mn 100000 Mono flat Al2O3 2t scan right side

• camea2018n000105.hdf: sc a3 -60 da3 0.5 np 121 mn 2000 Mono flat Al2O3 2t scan right side

• camea2018n000106.hdf: sc a3 -33.5 da3 0.2 np 11 mn 2000 Mono flat Al2O3 2t scan right side

• camea2018n000107.hdf: sc a3 -33.5 da3 0.5 np 11 mn 2000 Mono flat Al2O3 2t scan right side

• camea2018n000108.hdf Scan stopped before first point

• camea2018n000109.hdf: sc a3 -45 da3 0.1 np 21 mn 2000 Mono flat Al2O3 2t scan right side

• camea2018n000110.hdf: sc 2t -32 d2t 0.1 np 441 mn 10000 Mono flat Al2O3 2t scan right side

• camea2018n000111.hdf: sc a3 -25 da3 0.2 np 61 mn 2000 Two theta scan with PHO plus side

• camea2018n000112.hdf: sc a3 -25 da3 0.2 np 61 mn 2000 Two theta scan with PHO plus side

• camea2018n000113.hdf: sc a3 -67 da3 0.2 np 11 mn 5000 Two theta scan with PHO plus side

• camea2018n000114.hdf: sc 2t 72.5 d2t -0.1 np 151 mn 10000 Two theta scan with PHO plus side

• camea2018n000115.hdf: sc ei 4.15 dei -0.01 np 251 mn 100000 MV 80 V-TAS6 enrgy scan Be cold

• camea2018n000116.hdf Scan stopped before first point

• camea2018n000117.hdf: sc a1 37.08 da1 0.1 np 11 mn 1000 MV 80 V-TAS6 enrgy scan Be cold

• camea2018n000118.hdf: sc a1 37.08 da1 0.1 np 11 mn 2000 MV 80 V-TAS6 enrgy scan Be cold

• camea2018n000119.hdf: sc ei 4.15 dei -0.01 np 251 mn 100000 MV 80 V-TAS6 E scan Be cold after a1 a2
correction

• camea2018n000120.hdf: sc ei 5 dei -0.02 np 31 mn 20000 a1 softzero 0.391 a2 softzero 0.36

• camea2018n000121.hdf: sc a3 -67 da3 0.2 np 21 mn 10000 a1 softzero 0.391 a2 softzero 0.36

• camea2018n000122.hdf: sc a3 -67 da3 0.5 np 21 mn 10000 a1 softzero 0.391 a2 softzero 0.36

6.51. Electronic logbook of scans files 101

MJOLNIR Documentation, Release 1.0

• camea2018n000123.hdf: sc a3 -72 da3 0.5 np 21 mn 10000 a1 softzero 0.391 a2 softzero 0.36

• camea2018n000124.hdf: sc a3 -72 da3 0.2 np 21 mn 1000 a1 softzero 0.391 a2 softzero 0.36

• camea2018n000125.hdf: sc a3 -87 da3 0 np 1 ti 1 a1 softzero 0.391 a2 softzero 0.36

• camea2018n000126.hdf: sc a3 -87 da3 0.5 np 21 mn 100000 a1 softzero 0.391 a2 softzero 0.36

• camea2018n000127.hdf: sc a3 -87 da3 -0.5 np 21 mn 100000 a1 softzero 0.391 a2 softzero 0.36

• camea2018n000128.hdf Scan stopped before first point

• camea2018n000129.hdf: sc 2t -20 d2t 0.1 np 11 mn 2000 a1 softzero 0.391 a2 softzero 0.36

• camea2018n000130.hdf: sc a3 -87.315 da3 0.05 np 21 mn 2000 a1 softzero 0.391 a2 softzero 0.36

• camea2018n000131.hdf: sc mst 10 dmst 1 np 21 mn 2000 a1 softzero 0.391 a2 softzero 0.36

• camea2018n000132.hdf: sc msb 10 dmsb 1 np 21 mn 2000 a1 softzero 0.391 a2 softzero 0.36

• camea2018n000133.hdf: sc msl 10 dmsl 1 np 21 mn 2000 a1 softzero 0.391 a2 softzero 0.36

• camea2018n000134.hdf: sc msr 10 dmsr 1 np 21 mn 2000 a1 softzero 0.391 a2 softzero 0.36

• camea2018n000135.hdf: sc a3 0 da3 1 np 61 mn 150000 a1 softzero 0.391 a2 softzero 0.36

• camea2018n000136.hdf: sc a3 0 da3 0.5 np 121 mn 150000 A3 scan around 1 0 0 YMnO3 T=10, 2T= -20

• camea2018n000137.hdf: sc a3 0 da3 0.5 np 121 mn 150000 A3 scan around 1 0 0 YMnO3 T=10, 2T= -24

• camea2018n000138.hdf: sc a3 4 da3 0.2 np 21 mn 5000 A3 scan around 1 0 0 YMnO3 T=10, 2T= -24

• camea2018n000139.hdf: sc qh 0 -1 0 0 dqh 0 0.025 0 0 np 21 mn 10000 A3 scan around 1 0 0 YMnO3 T=10,
2T= -24

• camea2018n000140.hdf Scan stopped before first point

• camea2018n000141.hdf: sc a3 0 da3 1 np 121 mn 125000 A3 scan around 1 0 0 YMnO3 T=100K, 2T= -40, Ei
= 6.8

• camea2018n000142.hdf: sc a3 0 da3 -1 np 121 mn 125000 A3 scan around 1 0 0 YMnO3 T=100K, 2T= -36, Ei
= 6.8

• camea2018n000143.hdf: sc a3 0 da3 1 np 121 mn 125000 A3 scan around 1 0 0 YMnO3 T=100K, 2T= -40, Ei
= 5.25 (el. line)

• camea2018n000144.hdf: sc a3 0 da3 1 np 21 mn 5000 A3 scan around 1 0 0 YMnO3 T=100K, 2T= -40, Ei =
5.25 (el. line)

• camea2018n000145.hdf: sc a3 -4 da3 0.5 np 61 mn 75000 YMnO3 T=10 2T=84 Ei=6.8 Resolution for ++
scattering

• camea2018n000146.hdf Scan stopped before first point

• camea2018n000147.hdf: sc a3 26 da3 0.5 np 61 mn 75000 YMnO3 T=10 2T=84 Ei=6.8 Resolution for ++
scattering

• camea2018n000148.hdf: sc a3 0 da3 0.5 np 61 mn 75000 YMnO3 magnon dispersion 2t=-16 Ei=8.6meV
T=10K

• camea2018n000149.hdf: sc a3 0 da3 0.5 np 61 mn 75000 YMnO3 magnon dispersion 2t=-20 Ei=8.6meV t=10K

• camea2018n000150.hdf: sc a3 0 da3 0.5 np 61 mn 75000 YMnO3 magnon dispersion 2t=-12 Ei=8.6meV
T=10K

• camea2018n000151.hdf: sc a3 0 da3 0.5 np 61 mn 75000 YMnO3 magnon dispersion 2t=-16 Ei=8.6meV t=10K

• camea2018n000152.hdf: sc a3 0 da3 -1 np 121 mn 100000 YMnO3 Diffuse 2t=-12 Ei=6.8meV tt=60K

102 Chapter 6. Commissioning

MJOLNIR Documentation, Release 1.0

• camea2018n000153.hdf: sc a3 0 da3 -1 np 121 mn 100000 YMnO3 Diffuse 2t=-16 Ei=6.8meV tt=60K

• camea2018n000154.hdf: sc a3 0 da3 -1 np 121 mn 100000 YMnO3 Diffuse 2t=-12 Ei=6.8meV tt=60K

• camea2018n000155.hdf: sc a3 0 da3 -1 np 121 mn 100000 YMnO3 Diffuse 2t=-16 Ei=6.8meV tt=60K

• camea2018n000156.hdf: sc a3 0 da3 -1 np 121 mn 100000 YMnO3 Diffuse 2t=-46 Ei=6.8meV tt=60K

• camea2018n000157.hdf: sc a3 0 da3 -1 np 121 mn 100000 YMnO3 Diffuse 2t=-50 Ei=6.8meV tt=60K

• camea2018n000158.hdf: sc a3 0 da3 -1 np 121 mn 100000 YMnO3 Diffuse 2t=-12 Ei=6.8meV tt=100K

• camea2018n000159.hdf: sc a3 0 da3 -1 np 121 mn 100000 YMnO3 Diffuse 2t=-16 Ei=6.8meV tt=100K

• camea2018n000160.hdf: sc a3 34 da3 0 np 3 ti 10 YMnO3 Diffuse 2t=-16 Ei=6.8meV tt=100K

• camea2018n000161.hdf: sc a3 0 da3 0.5 np 81 mn 75000 YMnO3 T=10K positive side 2t=84

• camea2018n000162.hdf: sc a3 0 da3 0.5 np 81 mn 75000 YMnO3 T=10K positive side 2t=80

• camea2018n000163.hdf: sc a3 10 da3 0.5 np 81 mn 75000 YMnO3 T=10K positive side 2t=84 Ei=8.5

• camea2018n000164.hdf: sc a3 10 da3 0.5 np 81 mn 75000 YMnO3 T=10K positive side 2t=80 Ei=8.5

• camea2018n000165.hdf: sc a3 20 da3 0.5 np 81 mn 75000 YMnO3 T=10K positive side 2t=76 Ei=10.2

• camea2018n000166.hdf: sc a3 20 da3 0.5 np 81 mn 75000 YMnO3 T=10K positive side 2t=76 Ei=10.2

• camea2018n000167.hdf: sc a3 20 da3 0.5 np 81 mn 75000 YMnO3 T=10K positive side 2t=80 Ei=10.2

• camea2018n000168.hdf: sc a3 27 da3 0.5 np 81 mn 75000 YMnO3 T=10K positive side 2t=76 Ei=11.9

• camea2018n000169.hdf: sc a3 27 da3 0.5 np 81 mn 75000 YMnO3 T=10K positive side 2t=80 Ei=11.9

• camea2018n000178.hdf: sc a3 0 da3 1 np 181 mn 100000 PbTi T=1.5K Ei=5.5 2t=-10 HHL plane around 1 1 0

• camea2018n000179.hdf: sc a3 0 da3 1 np 181 mn 100000 PbTi T=1.5K Ei=5.5 2t=-14 HHL plane around 1 1 0

• camea2018n000180.hdf: sc a3 0 da3 1 np 181 mn 100000 PbTi T=1.5K Ei=5.5 2t=-50 HHL plane around 1 1 0

• camea2018n000181.hdf: sc a3 0 da3 1 np 181 mn 100000 PbTi T=1.5K Ei=5.5 2t=-54 HHL plane around 1 1 0

• camea2018n000182.hdf: sc a3 -10 da3 1 np 181 mn 100000 PbTi T=1.5K Ei=7.1 2t=-10 HHL plane around 1
1 0

• camea2018n000183.hdf: sc a3 -10 da3 1 np 181 mn 100000 PbTi T=1.5K Ei=7.1 2t=-14 HHL plane around 1
1 0

• camea2018n000184.hdf: sc a3 -10 da3 1 np 181 mn 100000 PbTi T=1.5K Ei=7.1 2t=-50 HHL plane around 1
1 0

• camea2018n000185.hdf: sc a3 -10 da3 1 np 181 mn 100000 PbTi T=1.5K Ei=7.1 2t=-54 HHL plane around 1
1 0

• camea2018n000186.hdf: sc a3 -5 da3 1 np 181 mn 100000 PbTi T=1.5K Ei=6.6 2t=-10 HHL plane around 1 1
0

• camea2018n000187.hdf: sc a3 -5 da3 1 np 181 mn 100000 PbTi T=1.5K Ei=6.6 2t=-14 HHL plane around 1 1
0

• camea2018n000190.hdf: sc a3 -5 da3 1 np 181 mn 100000 PbTi T=1.5K Ei=6.6 2t=-54 HHL plane around 1 1
0

• camea2018n000191.hdf: sc a3 -1 da3 0.1 np 31 mn 2000 SeCuO3 hk0 plane Alignment

• camea2018n000192.hdf: sc sgl -2 dsgl 0.5 np 15 mn 2000 SeCuO3 hk0 plane Alignment

• camea2018n000193.hdf: sc sgu 0 dsgu 0.5 np 15 mn 2000 SeCuO3 hk0 plane Alignment

6.51. Electronic logbook of scans files 103

MJOLNIR Documentation, Release 1.0

• camea2018n000194.hdf: sc sgu 0 dsgu 0.5 np 15 mn 2000 SeCuO3 hk0 plane Alignment

• camea2018n000195.hdf: sc sgl -3 dsgl 0.5 np 15 mn 2000 SeCuO3 hk0 plane Alignment

• camea2018n000196.hdf: sc a3 -1.85 da3 0.1 np 21 mn 2000 SeCuO3 hk0 plane Alignment

• camea2018n000197.hdf: sc a3 69.7 da3 0.1 np 31 mn 50000 SeCuO3 hk0 plane Alignment

• camea2018n000198.hdf: sc a3 69.7 da3 2.5 np 5 mn 50000 SeCuO3 hk0 plane Alignment

• camea2018n000199.hdf: sc a3 69.7 da3 5 np 7 mn 50000 SeCuO3 hk0 plane Alignment

• camea2018n000200.hdf: sc a3 -23 da3 0.5 np 21 mn 5000 SeCuO3 hk0 plane Alignment

• camea2018n000201.hdf: sc a3 -5 da3 0.25 np 21 mn 2000 SeCuO3 hk0 plane Alignment

• camea2018n000202.hdf: sc a3 -5.2 da3 0.1 np 21 mn 2000 SeCuO3 hk0 plane Alignment

• camea2018n000203.hdf: sc a3 27 da3 0.1 np 21 mn 2000 SeCuO3 hk0 plane Alignment

• camea2018n000204.hdf: sc a3 48 da3 0.25 np 21 mn 2000 SeCuO3 hk0 plane Alignment

• camea2018n000205.hdf: sc a3 47.75 da3 0.1 np 21 mn 2000 SeCuO3 hk0 plane Alignment

• camea2018n000206.hdf: sc a3 120 da3 0.1 np 21 mn 2000 SeCuO3 hk0 plane Alignment

• camea2018n000207.hdf: sc a3 119.7 da3 0.05 np 21 mn 2000 SeCuO3 hk0 plane Alignment

• camea2018n000208.hdf: sc a3 119.7 da3 0.05 np 21 mn 2000 SeCuO3 hk0 plane Alignment

• camea2018n000209.hdf: sc sgu 1 dsgu 0.5 np 7 mn 2000 SeCuO3 hk0 plane Alignment

• camea2018n000210.hdf: sc sgl -2.2 dsgl 0.5 np 7 mn 2000 SeCuO3 hk0 plane Alignment

• camea2018n000211.hdf: sc sgl -2.2 dsgl 0.5 np 7 mn 2000 SeCuO3 hk0 plane Alignment

• camea2018n000212.hdf: sc a3 115 da3 0.5 np 51 mn 100000 SeCu3 Map of 020 2t=-35 Ei=5.25

• camea2018n000213.hdf: sc a3 115 da3 0.5 np 51 mn 100000 SeCu3 Map of 020 2t=-31 Ei=5.25

• camea2018n000214.hdf: sc a3 115 da3 0.5 np 51 mn 100000 SeCu3 Map of 020 2t=-35 Ei=5.25

• camea2018n000215.hdf: sc a3 120 da3 1 np 41 mn 200000 SeCu3 Map of 020 2t=-40 Ei=5.55

• camea2018n000216.hdf: sc a3 120 da3 1 np 41 mn 200000 SeCu3 Map of 020 2t=-44 Ei=5.5

• camea2018n000217.hdf: sc a3 120 da3 1 np 41 mn 200000 SeCu3 Map of 020 2t=-40 Ei=5.55

• camea2018n000218.hdf: sc a3 120 da3 1 np 41 mn 200000 SeCu3 Map of 020 2t=-44 Ei=5.5

• camea2018n000219.hdf: sc a3 120 da3 1 np 41 mn 200000 SeCu3 Map of 020 2t=-40 Ei=5.55

• camea2018n000220.hdf: sc a3 120 da3 1 np 41 mn 200000 SeCu3 Map of 020 2t=-44 Ei=5.5

• camea2018n000221.hdf: sc a3 112 da3 0.1 np 21 mn 2000 Ni3TeO6 alignment

• camea2018n000222.hdf: sc a3 62 da3 0.1 np 21 mn 2000 Ni3TeO6 alignment

• camea2018n000223.hdf: sc a3 2 da3 0.1 np 21 mn 2000 Ni3TeO6 alignment

• camea2018n000224.hdf: sc sgu 0 dsgu 0.5 np 7 mn 5000 Ni3TeO6 alignment

• camea2018n000225.hdf not correct format

• camea2018n000226.hdf: sc sgl 0 dsgl 0.5 np 7 mn 5000 Ni3TeO6 alignment

• camea2018n000227.hdf: sc sgl -1 dsgl 0.5 np 9 mn 5000 Ni3TeO6 alignment

• camea2018n000228.hdf: sc sgu 0 dsgu 0.5 np 9 mn 5000 Ni3TeO6 alignment

• camea2018n000229.hdf: sc sgu 0 dsgu 0.5 np 9 mn 2000 Ni3TeO6 alignment

104 Chapter 6. Commissioning

MJOLNIR Documentation, Release 1.0

• camea2018n000230.hdf: sc sgl 0 dsgl 0.5 np 9 mn 2000 Ni3TeO6 alignment

• camea2018n000231.hdf: sc a3 55 da3 0.5 np 181 mn 250000 Ni3TeO6 Ei=5.75 2t=-10 around 0 0 1.5

• camea2018n000232.hdf: sc a3 55 da3 0.5 np 181 mn 250000 Ni3TeO6 Ei=5.75 2t=-14 around 0 0 1.5

• camea2018n000233.hdf: sc a3 35 da3 0.5 np 181 mn 250000 Ni3TeO6 Ei=7.35 2t=-10 around 0 0 1.5

• camea2018n000234.hdf: sc a3 35 da3 0.5 np 181 mn 200000 Ni3TeO6 Ei=7.35 2t=-10 around 0 0 1.5

• camea2018n000235.hdf: sc a3 35 da3 0.5 np 181 mn 200000 Ni3TeO6 Ei=7.35 2t=-14 around 0 0 1.5

• camea2018n000236.hdf: sc a3 55 da3 0.5 np 181 mn 150000 Ni3TeO6 Ei=5.5 2t=-10 T=25K around 0 0 1.5

• camea2018n000250.hdf: sc msl 10 dmsl 1 np 21 mn 2000 Alignment YMnO3

• camea2018n000251.hdf: sc msr 10 dmsr 1 np 21 mn 2000 Alignment YMnO3

• camea2018n000252.hdf: sc a3 79.79 da3 0.2 np 31 mn 5000 Alignment YMnO3

• camea2018n000253.hdf: sc a3 79.79 da3 0.2 np 31 mn 5000 Alignment YMnO3

• camea2018n000254.hdf: sc a3 79.99 da3 0.2 np 31 mn 5000 Alignment YMnO3

• camea2018n000255.hdf: sc a3 79.99 da3 0.2 np 31 mn 5000 Alignment YMnO3

• camea2018n000256.hdf: sc a3 79.99 da3 0.2 np 31 mn 5000 Alignment YMnO3

• camea2018n000257.hdf: sc a3 79.99 da3 0.2 np 31 mn 5000 Alignment YMnO3

• camea2018n000258.hdf: sc a3 79.99 da3 0.2 np 31 mn 5000 Alignment YMnO3

• camea2018n000259.hdf: sc a3 79 da3 1 np 181 mn 100000 YMnO3 inelastics, Ei=5.25 2t=-12 around 1 0 0

• camea2018n000260.hdf: sc a3 79 da3 1 np 181 mn 100000 YMnO3 inelastics, Ei=5.25 2t=-16 around 1 0 0

• camea2018n000261.hdf: sc a3 79 da3 1 np 181 mn 100000 YMnO3 inelastics, Ei=5.25 2t=-50 around 1 0 0

• camea2018n000262.hdf: sc a3 79 da3 1 np 181 mn 100000 YMnO3 inelastics, Ei=5.25 2t=-54 around 1 0 0

• camea2018n000263.hdf: sc a3 79 da3 1 np 181 mn 80000 YMnO3 inelastics, Ei=5.25 2t=-12 around 1 0 0
TT=2

• camea2018n000264.hdf: sc a3 79 da3 1 np 181 mn 80000 YMnO3 inelastics, Ei=5.25 2t=-16 around 1 0 0
TT=2

• camea2018n000265.hdf: sc a3 79 da3 1 np 181 mn 80000 YMnO3 inelastics, Ei=5.25 2t=-50 around 1 0 0
TT=2

• camea2018n000266.hdf not correct format

• camea2018n000267.hdf: sc a3 30.8 da3 0.1 np 21 mn 2000 YMnO3 inelastics, Ei=5.25 2t=-54 around 1 0 0
TT=2

• camea2018n000268.hdf: sc a3 90 da3 0.5 np 361 mn 10000 YMnO3 elastics, Ei=4.96 2t=-30 around 1 0 0

• camea2018n000269.hdf: sc a3 90 da3 0.25 np 721 mn 5000 YMnO3 elastics, Ei=4.96 2t=-31 around 1 0 0

• camea2018n000270.hdf: sc a3 90 da3 0.25 np 721 mn 5000 YMnO3 elastics, Ei=4.96 2t=-35 around 1 0 0

• camea2018n000276.hdf: sc a3 79 da3 1 np 181 mn 80000 YMnO3 inelastics, Ei=5.25 2t=-12 around 1 0 0

• camea2018n000277.hdf: sc a3 79 da3 1 np 181 mn 80000 YMnO3 inelastics, Ei=5.25 2t=-16 around 1 0 0

• camea2018n000278.hdf: sc a3 79 da3 1 np 181 mn 80000 YMnO3 inelastics, Ei=5.25 2t=-50 around 1 0 0

• camea2018n000279.hdf: sc a3 79 da3 1 np 181 mn 80000 YMnO3 inelastics, Ei=5.25 2t=-54 around 1 0 0

• camea2018n000280.hdf: sc a3 79 da3 1 np 181 mn 80000 YMnO3 inelastics, Ei=6.85 2t=-12 around 1 0 0

6.51. Electronic logbook of scans files 105

MJOLNIR Documentation, Release 1.0

• camea2018n000281.hdf: sc a3 79 da3 1 np 181 mn 80000 YMnO3 inelastics, Ei=6.85 2t=-12 around 1 0 0

• camea2018n000282.hdf: sc a3 79 da3 1 np 181 mn 80000 YMnO3 inelastics, Ei=6.85 2t=-16 around 1 0 0

• camea2018n000283.hdf: sc a3 79 da3 1 np 181 mn 80000 YMnO3 inelastics, Ei=6.85 2t=-50 around 1 0 0

• camea2018n000284.hdf: sc a3 79 da3 1 np 181 mn 80000 YMnO3 inelastics, Ei=6.85 2t=-54 around 1 0 0

• camea2018n000285.hdf: sc a3 95 da3 1 np 131 mn 80000 YMnO3 inelastics, Ei=6.85 2t=-12 around 1 0 0

• camea2018n000286.hdf: sc a3 95 da3 1 np 131 mn 80000 YMnO3 inelastics, Ei=6.85 2t=-16 around 1 0 0

• camea2018n000287.hdf: sc a3 95 da3 1 np 131 mn 80000 YMnO3 inelastics, Ei=6.85 2t=-50 around 1 0 0

• camea2018n000288.hdf: sc a3 95 da3 1 np 131 mn 80000 YMnO3 inelastics, Ei=6.85 2t=-54 around 1 0 0

• camea2018n000289.hdf: sc a3 48.5 da3 0.1 np 21 mn 2000 SrBaCuSiO alignment

• camea2018n000290.hdf: sc a3 132 da3 0.1 np 21 mn 2000 SrBaCuSiO alignment

• camea2018n000291.hdf: sc a3 49 da3 0.1 np 21 mn 2000 SrBaCuSiO alignment

• camea2018n000292.hdf: sc a3 48.995 da3 0.05 a4 -42.6642 da4 0.1 np 21 mn 2000 SrBaCuSiO alignment

• camea2018n000293.hdf: sc a3 136 da3 0.1 np 21 mn 2000 SrBaCuSiO alignment

• camea2018n000294.hdf: sc a3 136.30 da3 0.05 a4 -48.032 da4 0.1 np 21 mn 2000 SrBaCuSiO alignment

• camea2018n000295.hdf: sc a3 86.54 da3 0.1 np 21 mn 2000 SrBaCuSiO alignment

• camea2018n000296.hdf: sc a3 85.54 da3 0.1 np 21 mn 2000 SrBaCuSiO alignment

• camea2018n000297.hdf: sc a4 -66.195 da4 0.1 np 21 mn 2000 SrBaCuSiO alignment

• camea2018n000298.hdf: sc a3 48.6625 da3 0.1 np 21 mn 2000 SrBaCuSiO alignment

• camea2018n000299.hdf: sc a3 48.9586 da3 0.05 a4 -42.664 da4 0.1 np 21 mn 2000 SrBaCuSiO alignment

• camea2018n000300.hdf: sc sgl 0 dsgl 0.5 np 7 mn 2000 SrBaCuSiO alignment

• camea2018n000301.hdf: sc sgl 0 dsgl 0.5 np 11 mn 2000 SrBaCuSiO alignment

• camea2018n000302.hdf: sc sgu 0 dsgu 0.5 np 11 mn 2000 SrBaCuSiO alignment

• camea2018n000303.hdf: sc sgl 0 dsgl 0.5 np 11 mn 2000 SrBaCuSiO alignment

• camea2018n000304.hdf: sc mst 10 dmst 1 np 21 mn 2000 SrBaCuSiO alignment

• camea2018n000305.hdf: sc mst 17 dmst 1 np 21 mn 2000 SrBaCuSiO alignment

• camea2018n000306.hdf: sc msb 15 dmsb 1 np 21 mn 2000 SrBaCuSiO alignment

• camea2018n000307.hdf: sc msl 15 dmsl 1 np 21 mn 2000 SrBaCuSiO alignment

• camea2018n000308.hdf: sc msl 5 dmsl 1 np 21 mn 2000 SrBaCuSiO alignment

• camea2018n000309.hdf: sc msr 10 dmsr 1 np 21 mn 2000 SrBaCuSiO alignment

• camea2018n000310.hdf: sc msl 5 dmsl 1 np 21 mn 2000 SrBaCuSiO alignment

• camea2018n000311.hdf not correct format

• camea2018n000312.hdf: sc msr 10 dmsr 1 np 21 mn 2000 SrBaCuSiO alignment

• camea2018n000313.hdf: sc msl 5 dmsl 1 np 21 mn 2000 SrBaCuSiO alignment

• camea2018n000314.hdf: sc msr 10 dmsr 1 np 21 mn 2000 SrBaCuSiO alignment

• camea2018n000315.hdf: sc a3 40 da3 0.5 np 221 mn 100000 MV80 SrBaCuSiO Ei=7.5 2t=-12 tt=1.5

• camea2018n000316.hdf: sc a3 40 da3 0.5 np 221 mn 100000 MV80 SrBaCuSiO Ei=7.5 2t=-16 tt=1.5

106 Chapter 6. Commissioning

MJOLNIR Documentation, Release 1.0

• camea2018n000317.hdf: sc a3 30 da3 0.5 np 221 mn 100000 MV80 SrBaCuSiO Ei=9 2t=-12 tt=1.5

• camea2018n000318.hdf: sc a3 30 da3 0.5 np 221 mn 100000 MV80 SrBaCuSiO Ei=9 2t=-16 tt=1.5

• camea2018n000319.hdf: sc a3 19 da3 0.5 np 101 mn 100000 MV80 SrBaCuSiO Ei=7.5 2t=-25 tt=1.5

• camea2018n000320.hdf: sc a3 19 da3 0.5 np 101 mn 100000 MV80 SrBaCuSiO Ei=7.5 2t=-29 tt=1.5

•

* *

Note: Python 3.4 is believed to be compatible but is not tested due to updates in testing framework. Python 3.7 is
supported by the package but some of the dependencies might not be supported on all operating systems.

6.51. Electronic logbook of scans files 107

https://travis-ci.org/Jakob-Lass/MJOLNIR
https://coveralls.io/github/Jakob-Lass/MJOLNIR?branch=0.7
https://travis-ci.org/Jakob-Lass/MJOLNIR
https://travis-ci.org/Jakob-Lass/MJOLNIR
https://travis-ci.org/Jakob-Lass/MJOLNIR
https://travis-ci.org/Jakob-Lass/MJOLNIR
https://travis-ci.org/Jakob-Lass/MJOLNIR

MJOLNIR Documentation, Release 1.0

108 Chapter 6. Commissioning

Python Module Index

_
_tools, 59

a
Analyser, 33

d
Data, 38
DataFile, 56
DataSet, 48
Detector, 32

g
Geometry, 31
GeometryConcept, 31

i
Instrument, 35

s
Statistics, 37

v
Viewer1D, 58
Viewer3D, 57

w
Wedge, 35

109

MJOLNIR Documentation, Release 1.0

110 Python Module Index

Index

Symbols
_tools (module), 59

A
Analyser (class in Analyser), 33
Analyser (module), 33
append() (Instrument.Instrument method), 35
append() (Wedge.Wedge method), 35

B
beautifyArgs() (in module _tools), 59
binData3D() (DataSet.DataSet method), 39
binData3D() (in module DataSet), 48
binEdges() (in module _tools), 59
boundaryQ() (in module DataSet), 48

C
calculateDetectorAnalyserPositions()

(Wedge.Wedge method), 35
calculateEdgePolygons() (DataFile.DataFile

method), 56
calculateGrid3D() (in module DataSet), 48
convertDataFile() (DataSet.DataSet method), 39
convertToQxQy() (DataSet.DataSet method), 40
convertToQxQy() (in module DataSet), 49
convexHullPoints() (in module DataSet), 49
createQEAxes() (DataSet.DataSet method), 40
createQEAxes() (in module DataSet), 49
createRLUAxes() (DataSet.DataSet method), 40
createRLUAxes() (in module DataSet), 49
cut1D() (DataSet.DataSet method), 40
cut1D() (in module DataSet), 49
cut1DE() (DataSet.DataSet method), 41
cut1DE() (in module DataSet), 50
cutPowder() (DataSet.DataSet method), 41
cutPowder() (in module DataSet), 50
cutQE() (DataSet.DataSet method), 42
cutQE() (in module DataSet), 51
cutQELine() (DataSet.DataSet method), 42

D
Data (module), 38
DataFile (class in DataFile), 56
DataFile (module), 56
DataSet (class in DataSet), 38
DataSet (module), 38, 48
Detector (class in Detector), 32
Detector (module), 32
difference() (DataFile.DataFile method), 56

E
extractData() (DataSet.DataSet method), 43

F
fileListGenerator() (in module _tools), 60
FlatAnalyser (class in Analyser), 34

G
generateCalibration() (Instrument.Instrument

method), 36
generateCAMEAXML() (Instrument.Instrument

method), 35
Geometry (module), 31
GeometryConcept (class in GeometryConcept), 31
GeometryConcept (module), 31
GeometryObject (class in GeometryConcept), 32
getPixelPositions() (Detector.TubeDetector1D

method), 33

I
initData() (Viewer1D.Viewer1D method), 59
initialize() (Instrument.Instrument method), 36
Instrument (class in Instrument), 35
Instrument (module), 35

K
KwargChecker() (in module _tools), 59

111

MJOLNIR Documentation, Release 1.0

L
load() (GeometryConcept.GeometryConcept method),

31
load() (in module DataSet), 51
loadBinning() (DataFile.DataFile method), 56

M
my_timer_N() (in module _tools), 60

O
OxfordList() (in module DataSet), 48

P
plot() (Analyser.Analyser method), 34
plot() (Analyser.FlatAnalyser method), 34
plot() (Detector.Detector method), 32
plot() (Detector.TubeDetector1D method), 33
plot() (GeometryConcept.GeometryConcept method),

31
plot() (Instrument.Instrument method), 36
plot() (Wedge.Wedge method), 35
plotA3A4() (DataSet.DataSet method), 43
plotA3A4() (in module DataSet), 51
plotA4() (DataFile.DataFile method), 56
plotCut1D() (DataSet.DataSet method), 44
plotCut1D() (in module DataSet), 52
plotCutPowder() (DataSet.DataSet method), 45
plotCutPowder() (in module DataSet), 53
plotCutQE() (DataSet.DataSet method), 45
plotCutQE() (in module DataSet), 54
plotCutQELine() (DataSet.DataSet method), 46
plotData() (Viewer1D.Viewer1D method), 59
plotEf() (DataFile.DataFile method), 56
plotEfOverview() (DataFile.DataFile method), 56
plotFit() (Viewer1D.Viewer1D method), 59
plotNormalization() (DataFile.DataFile

method), 56
plotQPlane() (DataSet.DataSet method), 47
plotQPlane() (in module DataSet), 55
position (GeometryConcept.GeometryConcept

attribute), 32

R
removeFitPlot() (Viewer1D.Viewer1D method), 59

S
saveNXsqom() (DataFile.DataFile method), 57
saveXML() (Instrument.Instrument method), 36
Statistics (module), 37

T
TubeDetector1D (class in Detector), 33

V
View3D() (DataSet.DataSet method), 38
Viewer1D (class in Viewer1D), 58
Viewer1D (module), 58
Viewer3D (class in Viewer3D), 57
Viewer3D (module), 57
voronoiTessellation() (in module DataSet), 55

W
Wedge (class in Wedge), 35
Wedge (module), 35

112 Index

	Introduction
	Software Structure
	Installation
	License
	Bug Report

	Tutorials
	Scripting Tutorials
	Command Line Tutorials

	MJOLNIR Module
	Geometry Module
	Statistics Module
	Data Module
	Tools functions

	In depth description of core functionalities
	Geometry
	Energy normalization procedure
	Data file conversion
	Voronoi tessellation and plotting functionality
	Visualization methods

	Optimizations
	Optimizing of the plotA3A4 rountine
	Voronoi Tessellation subroutine
	Timing function

	Commissioning
	29/10-18 - Start of hot commissioning
	30/10-18 - Opening of shutter and background
	31/10-18 - Data wrangling and measurement
	01/11-18 - First Vanadium normalization scan
	02/11-18 - Background hunting
	05/11-18 - Energy normalization
	06/11-18 - Determination of A4 + Be filter cooling
	09/11-18 - First magnon in YMnO3
	10/11-18 - Currat Axe Spurion in YMnO3
	12/11-18 - No beam
	13/11-18 - No beam
	14/11-18 - No beam
	15/11-18 - No beam
	16/11-18 - Diffuse scattering
	17/11-18 - Magnon in YMnO3
	18/11-18 - Spinwaves in PbTi
	19/11-18 - Spinwaves in PbTi
	20/11-18 - Vacuum problems at SINQ
	21/11-18 - Measurement of CuSeO3
	21/11-18 - Measurement of CuSeO3 II
	23/11-18 - Startup of Ni3TeO6
	24/11-18 - Measurment of Ni3TeO6 II
	25/11-18 - Measurment of Ni3TeO6 III
	26/11-18 - Measurment of YMnO3 Startup
	27/11-18 - Measurment of YMnO3 II
	28/11-18 - Measurment of YMnO3 III
	29/11-18 - Measurment of YMnO3 IV
	30/11-18 - Measurment of YMnO3 V
	01/12-18 - Measurment of YMnO3 VI
	02/12-18 - Startup of Ming Purple
	03/12-18 - Ming Purple II
	04/12-18 - Magnet force test and Startup of LSCO
	05/12-18 - LSCO II
	06/12-18 - Christmas and Ming Purple
	07/12-18 - Christmas and Ming Purple
	08/12-18 - Christmas and Ming Purple
	09/12-18 - Startup of ???
	10/12-18 - Beam Down
	11/12-18 - Beam Down
	12/12-18 - Beam Down
	13/12-18 - Beam development
	14/12-18 - Startup of K2Ni2
	15/12-18 - K2Ni2 II
	16/12-18 - K2Ni2 III
	17/12-18 - Start of SCBO
	18/12-18 - SCBO II
	19/12-18 - Start of MnF2
	20/12-18 - MNF2 II
	21/12-18 - MNF2 III and Beam Shutdown
	Shielding Issues
	Electronic logbook of scans files

	Python Module Index
	Index

